
A Tutorial Introduction to ADB

J. F. Maranzano

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Debugging tools generally provide a wealth of information about the inner workings of
programs. These tools have been available onUNIX†

to allow users to examine ‘‘core’’ files that result from aborted programs. A new debugging program, ADB, pro-
vides enhanced capabilities to examine "core" and other program files in a variety of formats, run programs with em-
bedded breakpoints and patch files.
ADB is an indispensable but complex tool for debugging crashed systems and/or programs. This document pro-
vides an introduction to ADB with examples of its use. It explains the various formatting options, techniques for de-
bugging C programs, examples of printing file system information and patching.

May 5, 1977

†UNIX is a Trademark of Bell Laboratories.

-- --

A Tutorial Introduction to ADB

J. F. Maranzano

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction
ADB is a new debugging program that is available on UNIX. It provides capabilities to look at ‘‘core’’
files resulting from aborted programs, print output in a variety of formats, patch files, and run programs
with embedded breakpoints. This document provides examples of the more useful features of ADB. The
with the C language, and with References 1, 2 and 3.

2. A Quick Survey

2.1. Invocation
ADB is invoked as:

adb objfile corefile

whereobjfile is an executable UNIX file andcorefileis a core image file. Many times this will look like:

adb a.out core

or more simply:

adb

where the defaults area.outandcore respectively. The filename minus (−) means ignore this argument as
in:

adb − core

ADB has requests for examining locations in either file. The? request examines the contents ofobjfile,
the/ request examines thecorefile. The general form of these requests is:

address ? format

or

address / format

2.2. Current Address
ADB maintains a current address, called dot, similar in function to the current pointer in the UNIX editor.
When an address is entered, the current address is set to that location, so that:

0126?i

sets dot to octal 126 and prints the instruction at that address. The request:

.,10/d

reader is expected to be familiar with the basic commands onUNIX†

†UNIX is a Trademark of Bell Laboratories.

-- --

- 2 -

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the last item printed.
When used with the? or / requests, the current address can be advanced by typing newline; it can be decre-
mented by typinĝ.
Addresses are represented by expressions. Expressions are made up from decimal, octal, and hexadecimal
integers, and symbols from the program under test. These may be combined with the operators +, −, *, %
(integer division), & (bitwise and), | (bitwise inclusive or), # (round up to the next multiple), and ˜ (not).
(All arithmetic within ADB is 32 bits.) When typing a symbolic address for a C program, the user can type
nameor _name;ADB will recognize both forms.

2.3. Formats
To print data, a user specifies a collection of letters and characters that describe the format of the printout.
Formats are "remembered" in the sense that typing a request without one will cause the new printout to
appear in the previous format. The following are the most commonly used format letters.

b one byte in octal
c one byte as a character
o one word in octal
d one word in decimal
f two words in floating point
i PDP 11 instruction
s a null terminated character string
a the value of dot
u one word as unsigned integer
n print a newline
r print a blank space
ˆ backup dot

(Format letters are also available for "long" values, for example, ‘D’ for long decimal, and ‘F’ for double
floating point.) For other formats see the ADB manual.

2.4. General Request Meanings
The general form of a request is:

address,count command modifier

which sets ‘dot’ toaddressand executes the commandcounttimes.
The following table illustrates some general ADB command meanings:

Command Meaning
? Print contents from a.outfile
/ Print contents from corefile
= Print value of "dot"
: Breakpoint control
$ Miscellaneous requests
; Request separator
! Escape to shell

ADB catches signals, so a user cannot use a quit signal to exit from ADB. The request $q or $Q (or cntl-
D) must be used to exit from ADB.

3. Debugging C Programs

3.1. Debugging A Core Image
Consider the C program in Figure 1. The program is used to illustrate a common error made by C pro-
grammers. The object of the program is to change the lower case "t" to upper case in the string pointed to
by charpand then write the character string to the file indicated by argument 1. The bug shown is that the
character "T" is stored in the pointercharp instead of the string pointed to bycharp. Executing the

-- --

- 3 -

program produces a core file because of an out of bounds memory reference.
ADB is invoked by:

adb a.out core

The first debugging request:

$c

is used to give a C backtrace through the subroutines called. As shown in Figure 2 only one function
(main) was called and the argumentsargc andargv have octal values 02 and 0177762 respectively. Both of
these values look reasonable; 02 = two arguments, 0177762 = address on stack of parameter vector.
The next request:

$C

is used to give a C backtrace plus an interpretation of all the local variables in each function and their val-
ues in octal. The value of the variablecc looks incorrect sinceccwas declared as a character.
The next request:

$r

prints out the registers including the program counter and an interpretation of the instruction at that loca-
tion.
The request:

$e

prints out the values of all external variables.
A map exists for each file handled by ADB. The map for thea.outfile is referenced by? whereas the map
for corefile is referenced by/. Furthermore, a good rule of thumb is to use? for instructions and/ for data
when looking at programs. To print out information about the maps type:

$m

This produces a report of the contents of the maps. More about these maps later.
In our example, it is useful to see the contents of the string pointed to bycharp. This is done by:

*charp/s

which says usecharpas a pointer in thecorefile and print the information as a character string. This print-
out clearly shows that the character buffer was incorrectly overwritten and helps identify the error. Printing
the locations aroundcharpshows that the buffer is unchanged but that the pointer is destroyed. Using ADB
similarly, we could print information about the arguments to a function. The request:

main.argc/d

prints the decimalcore image value of the argumentargc in the functionmain.
The request:

*main.argv,3/o

prints the octal values of the three consecutive cells pointed to byargv in the functionmain. Note that these
values are the addresses of the arguments to main. Therefore:

0177770/s

prints the ASCII value of the first argument. Another way to print this value would have been

*"/s

The " means ditto which remembers the last address typed, in this casemain.argc; the * instructs ADB to
use the address field of thecorefile as a pointer.
The request:

.=o

-- --

- 4 -

prints the current address (not its contents) in octal which has been set to the address of the first argument.
The current address, dot, is used by ADB to "remember" its current location. It allows the user to reference
locations relative to the current address, for example:

.−10/d

3.2. Multiple Functions
Consider the C program illustrated in Figure 3. This program calls functionsf, g, andh until the stack is
exhausted and a core image is produced.
Again you can enter the debugger via:

adb

which assumes the namesa.out and core for the executable file and core image file respectively. The
request:

$c

will fill a page of backtrace references tof, g, andh. Figure 4 shows an abbreviated list (typingDEL will
terminate the output and bring you back to ADB request level).
The request:

,5$C

prints the five most recent activations.
Notice that each function (f,g,h) has a counter of the number of times it was called.
The request:

fcnt/d

prints the decimal value of the counter for the functionf. Similarly gcntandhcntcould be printed. To print
the value of an automatic variable, for example the decimal value ofx in the last call of the functionh, type:

h.x/d

It is currently not possible in the exported version to print stack frames other than the most recent activation
of a function. Therefore, a user can print everything with$C or the occurrence of a variable in the most
recent call of a function. It is possible with the$C request, however, to print the stack frame starting at
some address asaddress$C.

3.3. Setting Breakpoints
Consider the C program in Figure 5. This program, which changes tabs into blanks, is adapted fromSoft-
ware Toolsby Kernighan and Plauger, pp. 18-27.
We will run this program under the control of ADB (see Figure 6a) by:

adb a.out −

Breakpoints are set in the program as:

address:b [request]

The requests:

settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b

set breakpoints at the start of these functions. C does not generate statement labels. Therefore it is cur-
rently not possible to plant breakpoints at locations other than function entry points without a knowledge of
the code generated by the C compiler. The above addresses are entered assymbol+4 so that they will
appear in any C backtrace since the first instruction of each function is a call to the C save routine (csv).

-- --

- 5 -

Note that some of the functions are from the C library.
To print the location of breakpoints one types:

$b

The display indicates acountfield. A breakpoint is bypassedcount −1 times before causing a stop. The
commandfield indicates the ADB requests to be executed each time the breakpoint is encountered. In our
example nocommandfields are present.
By displaying the original instructions at the functionsettabwe see that the breakpoint is set after the jsr to
the C save routine. We can display the instructions using the ADB request:

settab,5?ia

This request displays five instructions starting atsettabwith the addresses of each location displayed.
Another variation is:

settab,5?i

which displays the instructions with only the starting address.
Notice that we accessed the addresses from thea.outfile with the? command. In general when asking for
a printout of multiple items, ADB will advance the current address the number of bytes necessary to satisfy
the request; in the above example five instructions were displayed and the current address was advanced 18
(decimal) bytes.
To run the program one simply types:

:r

To delete a breakpoint, for instance the entry to the functionsettab,one types:

settab+4:d

To continue execution of the program from the breakpoint type:

:c
Once the program has stopped (in this case at the breakpoint forfopen),ADB requests can be used to dis-
play the contents of memory. For example:

$C

to display a stack trace, or:

tabs,3/8o

to print three lines of 8 locations each from the array calledtabs. By this time (at locationfopen)in the C
program,settabhas been called and should have set a one in every eighth location oftabs.

3.4. Advanced Breakpoint Usage
We continue execution of the program with:

:c

See Figure 6b.Getc is called three times and the contents of the variablec in the functionmain are dis-
played each time. The single character on the left hand edge is the output from the C program. On the
third occurrence ofgetcthe program stops. We can look at the full buffer of characters by typing:

ibuf+6/20c

When we continue the program with:

:c

we hit our first breakpoint attabpossince there is a tab following the "This" word of the data.
Several breakpoints oftabposwill occur until the program has changed the tab into equivalent blanks.
Since we feel thattabposis working, we can remove the breakpoint at that location by:

-- --

- 6 -

tabpos+4:d

If the program is continued with:

:c

it resumes normal execution after ADB prints the message

a.out:running

The UNIX quit and interrupt signals act on ADB itself rather than on the program being debugged. If such
a signal occurs then the program being debugged is stopped and control is returned to ADB. The signal is
saved by ADB and is passed on to the test program if:

:c

is typed. This can be useful when testing interrupt handling routines. The signal is not passed on to the test
program if:

:c 0

is typed.
Now let us reset the breakpoint atsettaband display the instructions located there when we reach the
breakpoint. This is accomplished by:

settab+4:b settab,5?ia*

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only stop
after the third occurrence by typing:

getc+4,3:b main.c?C*

This request will print the local variablec in the functionmain at each occurrence of the break-
point. The semicolon is used to separate multiple ADB requests on a single line.
Warning: setting a breakpoint causes the value of dot to be changed; executing the program under ADB
does not change dot. Therefore:

settab+4:b .,5?ia
fopen+4:b

will print the last thing dot was set to (in the examplefopen+4) not the current location (settab+4) at which
the program is executing.
A breakpoint can be overwritten without first deleting the old breakpoint. For example:

settab+4:b settab,5?ia; ptab/o*

could be entered after typing the above requests.
Now the display of breakpoints:

$b

shows the above request for thesettabbreakpoint. When the breakpoint atsettabis encountered the ADB
requests are executed. Note that the location atsettab+4has been changed to plant the breakpoint; all the
other locations match their original value.
Using the functions,f, g andh shown in Figure 3, we can follow the execution of each function by planting
non-stopping breakpoints. We call ADB with the executable program of Figure 3 as follows:

* Owing to a bug in early versions of ADB (including the version distributed in Generic 3 UNIX)
these statements must be written as:

settab+4:b settab,5?ia;0
getc+4,3:b main.c?C;0
settab+4:b settab,5?ia; ptab/o;0

Note that;0 will set dot to zero and stop at the breakpoint.

-- --

- 7 -

adb ex3 −

Suppose we enter the following breakpoints:

h+4:b hcnt/d; h.hi/; h.hr/
g+4:b gcnt/d; g.gi/; g.gr/
f+4:b fcnt/d; f.fi/; f.fr/
:r

Each request line indicates that the variables are printed in decimal (by the specificationd). Since the for-
mat is not changed, thed can be left off all but the first request.
The output in Figure 7 illustrates two points. First, the ADB requests in the breakpoint line are not exam-
ined until the program under test is run. That means any errors in those ADB requests is not detected until
run time. At the location of the error ADB stops running the program.
The second point is the way ADB handles register variables. ADB uses the symbol table to address vari-
ables. Register variables, likef.fr above, hav e pointers to uninitialized places on the stack. Therefore the
message "symbol not found".
Another way of getting at the data in this example is to print the variables used in the call as:

f+4:b fcnt/d; f.a/; f.b/; f.fi/
g+4:b gcnt/d; g.p/; g.q/; g.gi/
:c

The operator / was used instead of ? to read values from thecore file. The output for each function, as
shown in Figure 7, has the same format. For the functionf, for example, it shows the name and value of the
externalvariablefcnt. It also shows the address on the stack and value of the variablesa, bandfi.
Notice that the addresses on the stack will continue to decrease until no address space is left for program
execution at which time (after many pages of output) the program under test aborts. A display with names
would be produced by requests like the following:

f+4:b fcnt/d; f.a/"a="d; f.b/"b="d; f.fi/"fi="d

In this format the quoted string is printed literally and thed produces a decimal display of the variables.
The results are shown in Figure 7.

3.5. Other Breakpoint Facilities
• Arguments and change of standard input and output are passed to a program as:

:r arg1 arg2 ... <infile >outfile

This request kills any existing program under test and starts thea.outafresh.
• The program being debugged can be single stepped by:

:s

If necessary, this request will start up the program being debugged and stop after executing the first
instruction.

• ADB allows a program to be entered at a specific address by typing:

address:r

• The count field can be used to skip the firstn breakpoints as:

,n:r

The request:

,n:c

may also be used for skipping the firstn breakpoints when continuing a program.

-- --

- 8 -

• A program can be continued at an address different from the breakpoint by:

address:c

• The program being debugged runs as a separate process and can be killed by:

:k

4. Maps
UNIX supports several executable file formats. These are used to tell the loader how to load the program
file. File type 407 is the most common and is generated by a C compiler invocation such ascc pgm.c. A
410 file is produced by a C compiler command of the formcc -n pgm.c, whereas a 411 file is produced by
cc -i pgm.c. ADB interprets these different file formats and provides access to the different segments
through a set of maps (see Figure 8). To print the maps type:

$m

In 407 files, both text (instructions) and data are intermixed. This makes it impossible for ADB to differ-
entiate data from instructions and some of the printed symbolic addresses look incorrect; for example,
printing data addresses as offsets from routines.
In 410 files (shared text), the instructions are separated from data and?* accesses the data part of thea.out
file. The?* request tells ADB to use the second part of the map in thea.outfile. Accessing data in the
core file shows the data after it was modified by the execution of the program. Notice also that the data
segment may have grown during program execution.
In 411 files (separated I & D space), the instructions and data are also separated. However, in this case,
since data is mapped through a separate set of segmentation registers, the base of the data segment is also
relative to address zero. In this case since the addresses overlap it is necessary to use the?* operator to
access the data space of thea.outfile. In both 410 and 411 files the corresponding core file does not con-
tain the program text.
Figure 9 shows the display of three maps for the same program linked as a 407, 410, 411 respectively. The
b, e, and f fields are used by ADB to map addresses into file addresses. The "f1" field is the length of the
header at the beginning of the file (020 bytes for ana.out file and 02000 bytes for acore file). The "f2"
field is the displacement from the beginning of the file to the data. For a 407 file with mixed text and data
this is the same as the length of the header; for 410 and 411 files this is the length of the header plus the
size of the text portion.
The "b" and "e" fields are the starting and ending locations for a segment. Given an address, A, the loca-
tion in the file (eithera.outor core) is calculated as:

b1≤A≤e1 => file address = (A−b1)+f1
b2≤A≤e2 => file address = (A−b2)+f2

A user can access locations by using the ADB defined variables. The$v request prints the variables initial-
ized by ADB:

b base address of data segment
d length of the data segment
s length of the stack
t length of the text
m execution type (407,410,411)

In Figure 9 those variables not present are zero. Use can be made of these variables by expressions such
as:

<b

in the address field. Similarly the value of the variable can be changed by an assignment request such as:

02000>b

that setsb to octal 2000. These variables are useful to know if the file under examination is an executable

-- --

- 9 -

or core image file.
ADB reads the header of thecore image file to find the values for these variables. If the second file speci-
fied does not seem to be acorefile, or if it is missing then the header of the executable file is used instead.

5. Advanced Usage
It is possible with ADB to combine formatting requests to provide elaborate displays. Below are several
examples.

5.1. Formatted dump
The line:

<b,−1/4o4ˆ8Cn

prints 4 octal words followed by their ASCII interpretation from the data space of the core image file. Bro-
ken down, the various request pieces mean:

<b The base address of the data segment.

<b,−1 Print from the base address to the end of file. A neg ative count is used here
and elsewhere to loop indefinitely or until some error condition (like end of
file) is detected.

The format4o4ˆ8Cnis broken down as follows:

4o Print 4 octal locations.

4ˆ Backup the current address 4 locations (to the original start of the field).

8C Print 8 consecutive characters using an escape convention; each character in
the range 0 to 037 is printed as @ followed by the corresponding character in
the range 0140 to 0177. An @ is printed as @@.

n Print a newline.

The request:

<b,<d/4o4ˆ8Cn

could have been used instead to allow the printing to stop at the end of the data segment (<d provides the
data segment size in bytes).
The formatting requests can be combined with ADB’s ability to read in a script to produce a core image
dump script. ADB is invoked as:

adb a.out core < dump

to read in a script file,dump,of requests. An example of such a script is:

120$w
4095$s
$v
=3n
$m
=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n"Registers"
$r

-- --

- 10 -

0$s
=3n"Data Segment"
<b,−1/8ona

The request120$wsets the width of the output to 120 characters (normally, the width is 80 characters).
ADB attempts to print addresses as:

symbol + offset

The request4095$sincreases the maximum permissible offset to the nearest symbolic address from 255
(default) to 4095. The request= can be used to print literal strings. Thus, headings are provided in this
dumpprogram with requests of the form:

=3n"C Stack Backtrace"

that spaces three lines and prints the literal string. The request$v prints all non-zero ADB variables (see
Figure 8). The request0$ssets the maximum offset for symbol matches to zero thus suppressing the print-
ing of symbolic labels in favor of octal values. Note that this is only done for the printing of the data seg-
ment. The request:

<b,−1/8ona

prints a dump from the base of the data segment to the end of file with an octal address field and eight octal
numbers per line.
Figure 11 shows the results of some formatting requests on the C program of Figure 10.

5.2. Directory Dump
As another illustration (Figure 12) consider a set of requests to dump the contents of a directory (which is
made up of an integerinumberfollowed by a 14 character name):

adb dir −
=n8t"Inum"8t"Name"
0,−1? u8t14cn

In this example, theu prints theinumberas an unsigned decimal integer, the8t means that ADB will space
to the next multiple of 8 on the output line, and the14cprints the 14 character file name.

5.3. Ilist Dump
Similarly the contents of theilist of a file system, (e.g. /dev/src, on UNIX systems distributed by the UNIX
Support Group; see UNIX Programmer’s Manual Section V) could be dumped with the following set of
requests:

adb /dev/src −
02000>b
?m <b
<b,−1?"flags"8ton"links,uid,gid"8t3bn",size"8tbrdn"addr"8t8un"times"8t2Y2na

In this example the value of the base for the map was changed to 02000 (by saying?m<b) since that is the
start of anilist within a file system. An artifice (brd above) was used to print the 24 bit size field as a byte,
a space, and a decimal integer. The last access time and last modify time are printed with the2Y operator.
Figure 12 shows portions of these requests as applied to a directory and file system.

5.4. Converting values
ADB may be used to convert values from one representation to another. For example:

072 = odx

will print

072 58 #3a

which is the octal, decimal and hexadecimal representations of 072 (octal). The format is remembered so

-- --

- 11 -

that typing subsequent numbers will print them in the given formats. Character values may be converted
similarly, for example:

’a’ = co

prints

a 0141

It may also be used to evaluate expressions but be warned that all binary operators have the same prece-
dence which is lower than that for unary operators.

6. Patching
Patching files with ADB is accomplished with thewrite, w or W, request (which is not like theed editor
write command). This is often used in conjunction with thelocate,l or L request. In general, the request
syntax forl andw are similar as follows:

?l value

The requestl is used to match on two bytes,L is used for four bytes. The requestw is used to write two
bytes, whereasW writes four bytes. Thevalue field in eitherlocate or write requests is an expression.
Therefore, decimal and octal numbers, or character strings are supported.
In order to modify a file, ADB must be called as:

adb −w file1 file2

When called with this option,file1 andfile2 are created if necessary and opened for both reading and writ-
ing.
For example, consider the C program shown in Figure 10. We can change the word "This" to "The " in the
executable file for this program,ex7, by using the following requests:

adb −w ex7 −
?l ’Th’
?W ’The ’

The request?l starts at dot and stops at the first match of "Th" having set dot to the address of the location
found. Note the use of? to write to thea.outfile. The form?* would have been used for a 411 file.
More frequently the request will be typed as:

?l ’Th’; ?s

and locates the first occurrence of "Th" and print the entire string. Execution of this ADB request will set
dot to the address of the "Th" characters.
As another example of the utility of the patching facility, consider a C program that has an internal logic
flag. The flag could be set by the user through ADB and the program run. For example:

adb a.out −
:s arg1 arg2
flag/w 1
:c

The :s request is normally used to single step through a process or start a process in single step mode. In
this case it startsa.out as a subprocess with argumentsarg1 and arg2. If there is a subprocess running
ADB writes to it rather than to the file so thew request causesflag to be changed in the memory of the sub-
process.

7. Anomalies
Below is a list of some strange things that users should be aware of.
1.Function calls and arguments are put on the stack by the C save routine. Putting breakpoints at the entry
point to routines means that the function appears not to have been called when the breakpoint occurs.

-- --

- 12 -

2.When printing addresses, ADB uses either text or data symbols from thea.out file. This sometimes
causes unexpected symbol names to be printed with data (e.g.savr5+022). This does not happen if? is
used for text (instructions) and/ for data.
3.ADB cannot handle C register variables in the most recently activated function.

8. Acknowledgements
The authors are grateful for the thoughtful comments on how to org anize this document from R. B. Brandt,
E. N. Pinson and B. A. Tague. D. M. Ritchie made the system changes necessary to accommodate tracing
within ADB. He also participated in discussions during the writing of ADB. His earlier work with DB and
CDB led to many of the features found in ADB.

9. References
1.D. M. Ritchie and K. Thompson, ‘‘The UNIX Time-Sharing System,’’ CACM, July, 1974.
2.B. W. Kernighan and D. M. Ritchie,The C Programming Language,Prentice-Hall, 1978.
3.K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual - 7th Edition, 1978.
4.B. W. Kernighan and P. J. Plauger,Software Tools,Addison-Wesley, 1976.

-- --

- 13 -

Figure 1: C program with pointer bug

struct buf {
int fildes;
int nleft;
char *nextp;
char buff[512];
}bb;

struct buf *obuf;

char *charp "this is a sentence.";

main(argc,argv)
int argc;
char **argv;
{

char cc;

if(argc < 2) {
printf("Input file missing\n");
exit(8);

}

if((fcreat(argv[1],obuf)) < 0){
printf("%s : not found\n", argv[1]);
exit(8);

}
charp = ´T´;

printf("debug 1 %s\n",charp);
while(cc= *charp++)

putc(cc,obuf);
fflush(obuf);

}

-- --

- 14 -

Figure 2: ADB output for C program of Figure 1

adb a.out core
$c
˜main(02,0177762)
$C
˜main(02,0177762)

argc: 02
argv: 0177762
cc: 02124

$r
ps 0170010
pc 0204 ˜main+0152
sp 0177740
r5 0177752
r4 01
r3 0
r2 0
r1 0
r0 0124
˜main+0152: mov _obuf,(sp)
$e
savr5: 0
_obuf: 0
_charp: 0124
_errno: 0
_fout: 0
$m
text map `ex1´
b1 = 0 e1 = 02360 f1 = 020
b2 = 0 e2 = 02360 f2 = 020
data map `core1´
b1 = 0 e1 = 03500 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 05500
*charp/s
0124: TTTLx Nh@x&_
˜
charp/s
_charp: T

_charp+02: this is a sentence.

_charp+026: Input file missing
main.argc/d
0177756: 2
*main.argv/3o
0177762: 0177770 0177776 0177777
0177770/s
0177770: a.out
*main.argv/3o
0177762: 0177770 0177776 0177777
*"/s
0177770: a.out
.=o

0177770
.−10/d
0177756: 2
$q

-- --

- 15 -

Figure 3: Multiple function C program for stack trace illustration

int fcnt,gcnt,hcnt;
h(x,y)
{

int hi; register int hr;
hi = x+1;
hr = x−y+1;
hcnt++ ;
hj:
f(hr,hi);

}

g(p,q)
{

int gi; register int gr;
gi = q−p;
gr = q−p+1;
gcnt++ ;
gj:
h(gr,gi);

}

f(a,b)
{

int fi; register int fr;
fi = a+2*b;
fr = a+b;
fcnt++ ;
fj:
g(fr,fi);

}

main()
{

f(1,1);
}

-- --

- 16 -

Figure 4: ADB output for C program of Figure 3

adb
$c
˜h(04452,04451)
˜g(04453,011124)
˜f(02,04451)
˜h(04450,04447)
˜g(04451,011120)
˜f(02,04447)
˜h(04446,04445)
˜g(04447,011114)
˜f(02,04445)
˜h(04444,04443)
HIT DEL KEY
adb
,5$C
˜h(04452,04451)

x: 04452
y: 04451
hi: ?

˜g(04453,011124)
p: 04453
q: 011124
gi: 04451
gr: ?

˜f(02,04451)
a: 02
b: 04451
fi: 011124
fr: 04453

˜h(04450,04447)
x: 04450
y: 04447
hi: 04451
hr: 02

˜g(04451,011120)
p: 04451
q: 011120
gi: 04447
gr: 04450

fcnt/d
_fcnt: 1173
gcnt/d
_gcnt: 1173
hcnt/d
_hcnt: 1172
h.x/d
022004: 2346
$q

-- --

- 17 -

Figure 5: C program to decode tabs

#define MAXLINE 80
#define YES 1
#define NO 0
#define TABSP 8

char input[] "data";
char ibuf[518];
int tabs[MAXLINE];

main()
{

int col, *ptab;
char c;

ptab = tabs;
settab(ptab); /*Set initial tab stops */
col = 1;
if(fopen(input,ibuf) < 0) {

printf("%s : not found\n",input);
exit(8);

}
while((c = getc(ibuf)) !=−1) {

switch(c) {
case′\t′: /* TAB */

while(tabpos(col) != YES) {
putchar(′ ′); /* put BLANK */
col++ ;

}
break;

case′\n′: /*NEWLINE */
putchar(′\n′);
col = 1;
break;

default:
putchar(c);
col++ ;

}
}

}

/* Tabpos return YES if col is a tab stop */
tabpos(col)
int col;
{

if(col > MAXLINE)
return(YES);

else
return(tabs[col]);

}

/* Settab - Set initial tab stops */
settab(tabp)
int *tabp;
{

int i;

for(i = 0; i<= MAXLINE; i++)
(i%TABSP) ? (tabs[i] = NO) : (tabs[i] = YES);

}

-- --

- 18 -

Figure 6a: ADB output for C program of Figure 5

adb a.out−
settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b
$b
breakpoints
count bkpt command
1 ˜tabpos+04
1 _getc+04
1 _fopen+04
1 ˜settab+04
settab,5?ia
˜settab: jsr r5,csv
˜settab+04: tst −(sp)
˜settab+06: clr 0177770(r5)
˜settab+012: cmp $0120,0177770(r5)
˜settab+020: blt ˜settab+076
˜settab+022:
settab,5?i
˜settab: jsr r5,csv

tst −(sp)
clr 0177770(r5)
cmp $0120,0177770(r5)
blt ˜settab+076

:r
a.out: running
breakpoint ˜settab+04: tst −(sp)
settab+4:d
:c
a.out: running
breakpoint _fopen+04: mov 04(r5),nulstr+012
$C
_fopen(02302,02472)
˜main(01,0177770)

col: 01
c: 0
ptab: 03500

tabs,3/8o
03500: 01 0 0 0 0 0 0 0

01 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0

-- --

- 19 -

Figure 6b: ADB output for C program of Figure 5

:c
a.out: running
breakpoint _getc+04: mov 04(r5),r1
ibuf+6/20c
__cleanu+0202: This is a test of
:c
a.out: running
breakpoint ˜tabpos+04: cmp $0120,04(r5)
tabpos+4:d
settab+4:b settab,5?ia
settab+4:b settab,5?ia; 0
getc+4,3:b main.c?C; 0
settab+4:b settab,5?ia; ptab/o; 0
$b
breakpoints
count bkpt command
1 ˜tabpos+04
3 _getc+04 main.c?C;0
1 _fopen+04
1 ˜settab+04 settab,5?ia;ptab?o;0
˜settab: jsr r5,csv
˜settab+04: bpt
˜settab+06: clr 0177770(r5)
˜settab+012: cmp $0120,0177770(r5)
˜settab+020: blt ˜settab+076
˜settab+022:
0177766: 0177770
0177744: @`
T0177744: T
h0177744: h
i0177744: i
s0177744: s

-- --

- 20 -

Figure 7: ADB output for C program with breakpoints
adb ex3−
h+4:b hcnt/d; h.hi/; h.hr/
g+4:b gcnt/d; g.gi/; g.gr/
f+4:b fcnt/d; f.fi/; f.fr/
:r
ex3: running
_fcnt: 0
0177732: 214
symbol not found
f+4:b fcnt/d; f.a/; f.b/; f.fi/
g+4:b gcnt/d; g.p/; g.q/; g.gi/
h+4:b hcnt/d; h.x/; h.y/; h.hi/
:c
ex3: running
_fcnt: 0
0177746: 1
0177750: 1
0177732: 214
_gcnt: 0
0177726: 2
0177730: 3
0177712: 214
_hcnt: 0
0177706: 2
0177710: 1
0177672: 214
_fcnt: 1
0177666: 2
0177670: 3
0177652: 214
_gcnt: 1
0177646: 5
0177650: 8
0177632: 214
HIT DEL
f+4:b fcnt/d; f.a/"a = "d; f.b/"b = "d; f.fi/"fi = "d
g+4:b gcnt/d; g.p/"p = "d; g.q/"q = "d; g.gi/"gi = "d
h+4:b hcnt/d; h.x/"x = "d; h.y/"h = "d; h.hi/"hi = "d
:r
ex3: running
_fcnt: 0
0177746: a = 1
0177750: b = 1
0177732: fi = 214
_gcnt: 0
0177726: p = 2
0177730: q = 3
0177712: gi = 214
_hcnt: 0
0177706: x = 2
0177710: y = 1
0177672: hi = 214
_fcnt: 1
0177666: a = 2
0177670: b = 3
0177652: fi = 214
HIT DEL
$q

-- --

- 21 -

Figure 8: ADB address maps
407 files

a.out hdr text+data
| _______| ___|

0 D

core hdr text+data stack
| ___________| ___......| ____________________|

0 D S E

410 files (shared text)

a.out hdr text data
| _______| ___| ___________________________|

0 T B D

core hdr data stack
| ___________| ___________________________......| ____________________|

B D S E

411 files (separated I and D space)

a.out hdr text data
| _______| ___| ___________________________|

0 T 0 D

core hdr data stack
| ___________| ___________________________......| ____________________|

0 D S E

The followingadbvariables are set.

407 410 411

b base of data 0 B 0
d length of data D D−B D
s length of stack S S S
t length of text 0 T T

-- --

- 22 -

Figure 9: ADB output for maps
adb map407 core407
$m
text map `map407´
b1 = 0 e1 = 0256 f1 = 020
b2 = 0 e2 = 0256 f2 = 020
data map `core407´
b1 = 0 e1 = 0300 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 02300
$v
variables
d = 0300
m = 0407
s = 02400
$q

adb map410 core410
$m
text map `map410´
b1 = 0 e1 = 0200 f1 = 020
b2 = 020000 e2 = 020116 f2 = 0220
data map `core410´
b1 = 020000 e1 = 020200 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 02200
$v
variables
b = 020000
d = 0200
m = 0410
s = 02400
t = 0200
$q

adb map411 core411
$m
text map `map411´
b1 = 0 e1 = 0200 f1 = 020
b2 = 0 e2 = 0116 f2 = 0220
data map `core411´
b1 = 0 e1 = 0200 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 02200
$v
variables
d = 0200
m = 0411
s = 02400
t = 0200
$q

-- --

- 23 -

Figure 10: Simple C program for illustrating formatting and patching

char str1[] "This is a character string";
int one 1;
int number 456;
long lnum 1234;
float fpt 1.25;
char str2[] "This is the second character string";
main()
{

one = 2;
}

-- --

- 24 -

Figure 11: ADB output illustrating fancy formats
adb map410 core410
<b,−1/8ona
020000: 0 064124 071551 064440 020163 020141 064143 071141

_str1+016: 061541 062564 020162 072163 064562 063556 0 02

_number:
_number: 0710 0 02322 040240 0 064124 071551 064440

_str2+06: 020163 064164 020145 062563 067543 062156 061440 060550

_str2+026: 060562 072143 071145 071440 071164 067151 0147 0

savr5+02: 0 0 0 0 0 0 0 0

<b,20/4o4ˆ8Cn
020000: 0 064124 071551 064440 @`@`This i

020163 020141 064143 071141 s a char
061541 062564 020162 072163 acter st
064562 063556 0 02 ring@`@`@b@`

_number: 0710 0 02322 040240 H@a@`@`R@d @@
0 064124 071551 064440 @`@`This i
020163 064164 020145 062563 s the se
067543 062156 061440 060550 cond cha
060562 072143 071145 071440 racter s
071164 067151 0147 0 tring@`@`@`
0 0 0 0 @`@`@`@`@`@`@`@`
0 0 0 0 @`@`@`@`@`@`@`@`

data address not found
<b,20/4o4ˆ8t8cna
020000: 0 064124 071551 064440 This i
_str1+06: 020163 020141 064143 071141 s a char
_str1+016: 061541 062564 020162 072163 acter st
_str1+026: 064562 063556 0 02 ring
_number:
_number: 0710 0 02322 040240 HR
_fpt+02: 0 064124 071551 064440 This i
_str2+06: 020163 064164 020145 062563 s the se
_str2+016: 067543 062156 061440 060550 cond cha
_str2+026: 060562 072143 071145 071440 racter s
_str2+036: 071164 067151 0147 0 tring
savr5+02: 0 0 0 0
savr5+012: 0 0 0 0
data address not found
<b,10/2b8tˆ2cn
020000: 0 0

_str1: 0124 0150 Th
0151 0163 is
040 0151 i
0163 040 s
0141 040 a
0143 0150 ch
0141 0162 ar
0141 0143 ac
0164 0145 te

$Q

-- --

- 25 -

Figure 12: Directory and inode dumps
adb dir −
=nt"Inode"t"Name"
0,−1?ut14cn

Inode Name
0: 652 .

82 ..
5971 cap.c
5323 cap
0 pp

adb /dev/src−
02000>b
?m<b
new map `/dev/src´
b1 = 02000 e1 = 0100000000 f1 = 0
b2 = 0 e2 = 0 f2 = 0
$v
variables
b = 02000
<b,−1?"flags"8ton"links,uid,gid"8t3bn"size"8tbrdn"addr"8t8un"times"8t2Y2na
02000: flags 073145

links,uid,gid 0163 0164 0141
size 0162 10356
addr 28770 8236 25956 27766 25455 8236 25956 25206
times 1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

02040: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 25130 15216 26890 29806 10784
times 1976 Aug 17 12:16:51 1976 Aug 17 12:16:51

02100: flags 05173
links,uid,gid 011 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
times 1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

-- --

- 26 -

ADB Summary
Command Summary
a) formatted printing

? format print froma.outfile according toformat
/ format print fromcorefile according toformat
= format print the value ofdot

?w expr write expression intoa.outfile
/w expr write expression intocorefile

?l expr locate expression ina.outfile
b) breakpoint and program control
:b set breakpoint atdot
:c continue running program
:d delete breakpoint
:k kill the program being debugged
:r runa.outfile under ADB control
:s single step
c) miscellaneous printing
$b print current breakpoints
$c C stack trace
$e external variables
$f floating registers
$m print ADB segment maps
$q exit from ADB
$r general registers
$s set offset for symbol match
$v print ADB variables
$w set output line width
d) calling the shell
! call shellto read rest of line
e) assignment to variables
>name assign dot to variable or registername

Format Summary
a the value of dot
b one byte in octal
c one byte as a character
d one word in decimal
f two words in floating point
i PDP 11 instruction
o one word in octal
n print a newline
r print a blank space
s a null terminated character string
nt move to nextn space tab
u one word as unsigned integer
x hexadecimal
Y date
ˆ backup dot
"..." print string

Expression Summary
a) expression components
decimal integere.g. 256
octal integere.g. 0277
hexadecimale.g. #ff
symbolse.g. flag _main main.argc
variablese.g. <b
registerse.g. <pc <r0
(expression)expression grouping
b) dyadic operators
+ add
− subtract
* multiply
% integer division
& bitwise and
| bitwise or
round up to the next multiple
c) monadic operators

˜ not
* contents of location
− integer negate

