
UUNNIIXX PPrrooggrraammmmiinngg —— SSeeccoonndd EEddiittiioonn

Brian W. Kernighan

Dennis M. Ritchie

BBeellll LLaabboorraattoorriieess
MMuurrrraayy HHiillll,, NNeeww JJeerrsseeyy 0077997744

ABSTRACT

This paper is an introduction to programming on theUNIX†
system. The emphasis is on how to write programs that interface to the operating system, either directly or through
the standard I/O library. The topics discussed include
• handling command arguments
• rudimentary I/O; the standard input and output
• the standard I/O library; file system access
• low-level I/O: open, read, write, close, seek
• processes: exec, fork, pipes
• signals — interrupts, etc.

There is also an appendix which describes the standard I/O library in detail.

November 2, 1997

†UNIX is a Trademark of Bell Laboratories.



-- --

UUNNIIXX PPrrooggrraammmmiinngg —— SSeeccoonndd EEddiittiioonn

Brian W. Kernighan

Dennis M. Ritchie

BBeellll LLaabboorraattoorriieess
MMuurrrraayy HHiillll,, NNeeww JJeerrsseeyy 0077997744

1. IINNTTRR OODDUUCCTTIIOONN
This paper describes how to write programs that interface with theUNIX operating system in a non-

trivial way. This includes programs that use files by name, that use pipes, that invoke other commands as
they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections ofTheUNIX Program-
mer’s Manual[1] for Version 7UNIX. There is no attempt to be complete; only generally useful material is
dealt with. It is assumed that you will be programming in C, so you must be able to read the language
roughly up to the level ofThe C Programming Language[2]. Some of the material in sections 2 through 4
is based on topics covered more carefully there. You should also be familiar withUNIX itself at least to the
level of UNIX for Beginners[3].

2. BB AASSIICCSS

2.1. PPrrooggrraamm AArrgguummeennttss
When a C program is run as a command, the arguments on the command line are made available to the

function main as an argument countargc and an arrayargv of pointers to character strings that con-
tain the arguments. By convention,argv[0] is the command name itself, soargc is always greater
than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to the terminal.
(This is essentially theecho command.)

main(argc, argv)/* echo arguments */
int argc;
char *argv[];
{
int i;

for (i = 1; i < argc; i++)
printf("%s%c", argv[i], (i<argc-1) ? ’ ’ : ’0);
}

argv is a pointer to an array whose individual elements are pointers to arrays of characters; each is termi-
nated by\0 , so they can be treated as strings. The program starts by printingargv[1] and loops until it
has printed them all.

The argument count and the arguments are parameters tomain . If you want to keep them around so
other routines can get at them, you must copy them to external variables.

2.2. TThhee ‘‘‘‘SSttaannddaarrdd IInnppuutt’’’’ aanndd ‘‘‘‘SSttaannddaarrdd OOuuttppuutt’’’’
The simplest input mechanism is to read the ‘‘standard input,’’ which is generally the user’s terminal.

The functiongetchar returns the next input character each time it is called. A file may be substituted for
the terminal by using the< convention: ifprog usesgetchar , then the command line

prog <file

causesprog to readfile instead of the terminal.prog itself need know nothing about where its input



-- --

- 2 -

is coming from. This is also true if the input comes from another program via the pipe mechanism:

otherprog prog

provides the standard input forprog from the standard output ofotherprog.
getchar returns the valueEOFwhen it encounters the end of file (or an error) on whatever you are

reading. The value ofEOF is normally defined to be-1 , but it is unwise to take any advantage of that
knowledge. As will become clear shortly, this value is automatically defined for you when you compile a
program, and need not be of any concern.

Similarly, putchar(c) puts the characterc on the ‘‘standard output,’’ which is also by default the
terminal. The output can be captured on a file by using>: if prog usesputchar ,

prog >outfile

writes the standard output onoutfile instead of the terminal.outfile is created if it doesn’t exist; if
it already exists, its previous contents are overwritten. And a pipe can be used:

prog otherprog

puts the standard output ofprog into the standard input ofotherprog.
The functionprintf , which formats output in various ways, uses the same mechanism asputchar

does, so calls toprintf and putchar may be intermixed in any order; the output will appear in the
order of the calls.

Similarly, the functionscanf provides for formatted input conversion; it will read the standard input
and break it up into strings, numbers, etc., as desired.scanf uses the same mechanism asgetchar , so
calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs I/O withgetchar ,
putchar , scanf , andprintf may be entirely adequate, and it is almost always enough to get started.
This is particularly true if theUNIX pipe facility is used to connect the output of one program to the input
of the next. For example, the following program strips out all ascii control characters from its input (except
for newline and tab).

#include <stdio.h>

main()/* ccstrip: strip non-graphic characters */
{
int c;
while ((c = getchar()) != EOF)
if ((c >= ’ ’ && c < 0177) c == ’ ’ c == ’0)
putchar(c);
exit(0);
}

The line

#include <stdio.h>

should appear at the beginning of each source file. It causes the C compiler to read a file
(/usr/include/stdio.h) of standard routines and symbols that includes the definition ofEOF.

If it is necessary to treat multiple files, you can usecat to collect the files for you:

cat file1 file2 ... ccstrip >output

and thus avoid learning how to access files from a program. By the way, the call toexit at the end is not
necessary to make the program work properly, but it assures that any caller of the program will see a nor-
mal termination status (conventionally 0) from the program when it completes. Section 6 discusses status
returns in more detail.



-- --

- 3 -

3. TTHHEE SSTTAANNDDAARRDD II//OO LLIIBBRRAARRYY
The ‘‘Standard I/O Library’’ is a collection of routines intended to provide efficient and portable I/O

services for most C programs. The standard I/O library is available on each system that supports C, so pro-
grams that confine their system interactions to its facilities can be transported from one system to another
essentially without change.

In this section, we will discuss the basics of the standard I/O library. The appendix contains a more
complete description of its capabilities.

3.1. FFiillee AAcccceessss
The programs written so far have all read the standard input and written the standard output, which we

have assumed are magically pre-defined. The next step is to write a program that accesses a file that isnot
already connected to the program. One simple example iswc, which counts the lines, words and characters
in a set of files. For instance, the command

wc x.c y.c

prints the number of lines, words and characters inx.c andy.c and the totals.
The question is how to arrange for the named files to be read — that is, how to connect the file system

names to the I/O statements which actually read the data.
The rules are simple. Before it can be read or written a file has to beopenedby the standard library

function fopen . fopen takes an external name (likex.c or y.c ), does some housekeeping and negoti-
ation with the operating system, and returns an internal name which must be used in subsequent reads or
writes of the file.

This internal name is actually a pointer, called afile pointer, to a structure which contains information
about the file, such as the location of a buffer, the current character position in the buffer, whether the file is
being read or written, and the like. Users don’t need to know the details, because part of the standard I/O
definitions obtained by includingstdio.h is a structure definition calledFILE . The only declaration
needed for a file pointer is exemplified by

FILE*fp, *fopen();

This says thatfp is a pointer to aFILE , andfopen returns a pointer to aFILE . (FILE is a type name,
like int , not a structure tag.

The actual call tofopen in a program is

fp = fopen(name, mode);

The first argument offopen is the name of the file, as a character string. The second argument is the
mode, also as a character string, which indicates how you intend to use the file. The only allowable modes
are read ("r" ), write ("w" ), or append ("a" ).

If a file that you open for writing or appending does not exist, it is created (if possible). Opening an
existing file for writing causes the old contents to be discarded. Trying to read a file that does not exist is
an error, and there may be other causes of error as well (like trying to read a file when you don’t hav e per-
mission). If there is any error,fopen will return the null pointer valueNULL (which is defined as zero in
stdio.h ).

The next thing needed is a way to read or write the file once it is open. There are several possibilities,
of which getc andputc are the simplest.getc returns the next character from a file; it needs the file
pointer to tell it what file. Thus

c = getc(fp)

places inc the next character from the file referred to byfp ; it returnsEOFwhen it reaches end of file.
putc is the inverse ofgetc :

putc(c, fp)

puts the characterc on the filefp and returnsc . getc andputc returnEOFon error.
When a program is started, three files are opened automatically, and file pointers are provided for them.

These files are the standard input, the standard output, and the standard error output; the corresponding file
pointers are calledstdin , stdout , andstderr . Normally these are all connected to the terminal, but



-- --

- 4 -

may be redirected to files or pipes as described in Section 2.2.stdin , stdout andstderr are pre-
defined in the I/O library as the standard input, output and error files; they may be used anywhere an object
of typeFILE * can be. They are constants, however,notvariables, so don’t try to assign to them.

With some of the preliminaries out of the way, we can now writewc. The basic design is one that has
been found convenient for many programs: if there are command-line arguments, they are processed in
order. If there are no arguments, the standard input is processed. This way the program can be used stand-
alone or as part of a larger process.

#include <stdio.h>

main(argc, argv)/* wc: count lines, words, chars */
int argc;
char *argv[];
{
int c, i, inword;
FILE *fp, *fopen();
long linect, wordct, charct;
long tlinect = 0, twordct = 0, tcharct = 0;

i = 1;
fp = stdin;
do {
if (argc > 1 && (fp=fopen(argv[i], "r")) == NULL) {
fprintf(stderr, "wc: can’t open %s0, argv[i]);
continue;
}
linect = wordct = charct = inword = 0;
while ((c = getc(fp)) != EOF) {
charct++;
if (c == ’0)
linect++;
if (c == ’ ’ c == ’ ’ c == ’0)
inword = 0;
else if (inword == 0) {
inword = 1;
wordct++;
}
}
printf("%7ld %7ld %7ld", linect, wordct, charct);
printf(argc > 1 ? " %s0 : "0, argv[i]);
fclose(fp);
tlinect += linect;
twordct += wordct;
tcharct += charct;
} while (++i < argc);
if (argc > 2)
printf("%7ld %7ld %7ld total0, tlinect, twordct, tcharct);
exit(0);
}

The functionfprintf is identical toprintf , sav e that the first argument is a file pointer that specifies
the file to be written.

The functionfclose is the inverse offopen ; it breaks the connection between the file pointer and
the external name that was established byfopen , freeing the file pointer for another file. Since there is a
limit on the number of files that a program may have open simultaneously, it’s a good idea to free things
when they are no longer needed. There is also another reason to callfclose on an output file — it
flushes the buffer in whichputc is collecting output. (fclose is called automatically for each open file
when a program terminates normally.)



-- --

- 5 -

3.2. EErrrroorr HHaannddlliinngg —— SSttddeerrrr aanndd EExxiitt
stderr is assigned to a program in the same way thatstdin andstdout are. Output written on

stderr appears on the user’s terminal even if the standard output is redirected.wc writes its diagnostics
on stderr instead ofstdout so that if one of the files can’t be accessed for some reason, the message
finds its way to the user’s terminal instead of disappearing down a pipeline or into an output file.

The program actually signals errors in another way, using the functionexit to terminate program
execution. The argument ofexit is available to whatever process called it (see Section 6), so the success
or failure of the program can be tested by another program that uses this one as a sub-process. By conven-
tion, a return value of 0 signals that all is well; non-zero values signal abnormal situations.

exit itself callsfclose for each open output file, to flush out any buffered output, then calls a rou-
tine named_exit . The function_exit causes immediate termination without any buffer flushing; it
may be called directly if desired.

3.3. MMiisscceellllaanneeoouuss II//OO FFuunnccttiioonnss
The standard I/O library provides several other I/O functions besides those we have illustrated above.
Normally output withputc , etc., is buffered (except tostderr ); to force it out immediately, use

fflush(fp) .
fscanf is identical toscanf , except that its first argument is a file pointer (as withfprintf ) that

specifies the file from which the input comes; it returnsEOFat end of file.
The functionssscanf andsprintf are identical tofscanf and fprintf , except that the first

argument names a character string instead of a file pointer. The conversion is done from the string for
sscanf and into it forsprintf .

fgets(buf, size, fp) copies the next line fromfp , up to and including a newline, intobuf ;
at mostsize-1 characters are copied; it returnsNULL at end of file. fputs(buf, fp) writes the
string inbuf onto filefp .

The functionungetc(c, fp) ‘‘pushes back’’ the characterc onto the input streamfp ; a subse-
quent call togetc , fscanf , etc., will encounterc . Only one character of pushback per file is permitted.

4. LLOO WW--LLEEVVEELL II//OO
This section describes the bottom level of I/O on theUNIX system. The lowest level of I/O inUNIX

provides no buffering or any other services; it is in fact a direct entry into the operating system. You are
entirely on your own, but on the other hand, you have the most control over what happens. And since the
calls and usage are quite simple, this isn’t as bad as it sounds.

4.1. FFiillee DDeessccrriippttoorrss
In the UNIX operating system, all input and output is done by reading or writing files, because all

peripheral devices, even the user’s terminal, are files in the file system. This means that a single, homoge-
neous interface handles all communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the system of your
intent to do so, a process called ‘‘opening’’ the file. If you are going to write on a file, it may also be neces-
sary to create it. The system checks your right to do so (Does the file exist? Do you have permission to
access it?), and if all is well, returns a small positive integer called afile descriptor. Whenever I/O is to be
done on the file, the file descriptor is used instead of the name to identify the file. (This is roughly analo-
gous to the use ofREAD(5,...)andWRITE(6,...)in Fortran.) All information about an open file is maintained
by the system; the user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file descriptors are
more fundamental. A file pointer is a pointer to a structure that contains, among other things, the file
descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements exist to
make this convenient. When the command interpreter (the ‘‘shell’’) runs a program, it opens three files,
with file descriptors 0, 1, and 2, called the standard input, the standard output, and the standard error output.
All of these are normally connected to the terminal, so if a program reads file descriptor 0 and writes file
descriptors 1 and 2, it can do terminal I/O without worrying about opening the files.



-- --

- 6 -

If I/O is redirected to and from files with< and>, as in

prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the named files.
Similar observations hold if the input or output is associated with a pipe. Normally file descriptor 2
remains attached to the terminal, so error messages can go there. In all cases, the file assignments are
changed by the shell, not by the program. The program does not need to know where its input comes from
nor where its output goes, so long as it uses file 0 for input and 1 and 2 for output.

4.2. RReeaadd aanndd WWrriittee
All input and output is done by two functions calledread andwrite . For both, the first argument is

a file descriptor. The second argument is a buffer in your program where the data is to come from or go to.
The third argument is the number of bytes to be transferred. The calls are

n_read = read(fd, buf, n);

n_written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading, the number of
bytes returned may be less than the number asked for, because fewer thann bytes remained to be read.
(When the file is a terminal,read normally reads only up to the next newline, which is generally less than
what was requested.) A return value of zero bytes implies end of file, and-1 indicates an error of some
sort. For writing, the returned value is the number of bytes actually written; it is generally an error if this
isn’t equal to the number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values are 1, which
means one character at a time (‘‘unbuffered’’), and 512, which corresponds to a physical blocksize on many
peripheral devices. This latter size will be most efficient, but even character at a time I/O is not inordinately
expensive.

Putting these facts together, we can write a simple program to copy its input to its output. This pro-
gram will copy anything to anything, since the input and output can be redirected to any file or device.

#defineBUFSIZE512/* best size for PDP-11 UNIX */

main()/* copy input to output */
{
charbuf[BUFSIZE];
intn;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(1, buf, n);
exit(0);
}

If the file size is not a multiple ofBUFSIZE, someread will return a smaller number of bytes to be writ-
ten bywrite ; the next call toread after that will return zero.

It is instructive to see howread and write can be used to construct higher level routines like
getchar , putchar , etc. For example, here is a version ofgetchar which does unbuffered input.

#defineCMASK0377/* for making char’s > 0 */

getchar()/* unbuffered single character input */
{
char c;

return((read(0, &c, 1) > 0) ? c & CMASK : EOF);
}

c mustbe declaredchar , becauseread accepts a character pointer. The character being returned must
be masked with0377 to ensure that it is positive; otherwise sign extension may make it neg ative. (The



-- --

- 7 -

constant0377 is appropriate for thePDP-11 but not necessarily for other machines.)
The second version ofgetchar does input in big chunks, and hands out the characters one at a time.

#defineCMASK0377/* for making char’s > 0 */
#defineBUFSIZE512

getchar()/* buffered version */
{
static charbuf[BUFSIZE];
static char*bufp = buf;
static intn = 0;

if (n == 0) {/* buffer is empty */
n = read(0, buf, BUFSIZE);
bufp = buf;
}
return((--n >= 0) ? *bufp++ & CMASK : EOF);
}

4.3. OOppeenn,, CCrreeaatt,, CClloossee,, UUnnlliinnkk
Other than the default standard input, output and error files, you must explicitly open files in order to

read or write them. There are two system entry points for this,open andcreat [sic].
open is rather like thefopen discussed in the previous section, except that instead of returning a file

pointer, it returns a file descriptor, which is just anint .

int fd;

fd = open(name, rwmode);

As with fopen , the name argument is a character string corresponding to the external file name. The
access mode argument is different, however:rwmode is 0 for read, 1 for write, and 2 for read and write
access.open returns-1 if any error occurs; otherwise it returns a valid file descriptor.

It is an error to try toopen a file that does not exist. The entry pointcreat is provided to create new
files, or to re-write old ones.

fd = creat(name, pmode);

returns a file descriptor if it was able to create the file calledname, and-1 if not. If the file already exists,
creat will truncate it to zero length; it is not an error tocreat a file that already exists.

If the file is brand new,creat creates it with theprotection modespecified by thepmode argument.
In theUNIX file system, there are nine bits of protection information associated with a file, controlling read,
write and execute permission for the owner of the file, for the owner’s group, and for all others. Thus a
three-digit octal number is most convenient for specifying the permissions. For example, 0755 specifies
read, write and execute permission for the owner, and read and execute permission for the group and every-
one else.

To illustrate, here is a simplified version of theUNIX utility cp, a program which copies one file to
another. (The main simplification is that our version copies only one file, and does not permit the second
argument to be a directory.)

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644 /* RW for owner, R for group, others */

main(argc, argv)/* cp: copy f1 to f2 */
int argc;
char *argv[];
{
intf1, f2, n;
charbuf[BUFSIZE];



-- --

- 8 -

if (argc != 3)
error("Usage: cp from to", NULL);
if ((f1 = open(argv[1], 0)) == -1)
error("cp: can’t open %s", argv[1]);
if ((f2 = creat(argv[2], PMODE)) == -1)
error("cp: can’t create %s", argv[2]);

while ((n = read(f1, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) != n)
error("cp: write error", NULL);
exit(0);
}

error(s1, s2)/* print error message and die */
char *s1, *s2;
{
printf(s1, s2);
printf("0);
exit(1);
}

As we said earlier, there is a limit (typically 15-25) on the number of files which a program may have
open simultaneously. Accordingly, any program which intends to process many files must be prepared to
re-use file descriptors. The routineclose breaks the connection between a file descriptor and an open
file, and frees the file descriptor for use with some other file. Termination of a program viaexit or return
from the main program closes all open files.

The functionunlink(filename) removes the filefilename from the file system.

4.4. RRaannddoomm AAcccceessss —— SSeeeekk aanndd LLsseeeekk
File I/O is normally sequential: eachread or write takes place at a position in the file right after the

previous one. When necessary, howev er, a file can be read or written in any arbitrary order. The system
call lseek provides a way to move around in a file without actually reading or writing:

lseek(fd, offset, origin);

forces the current position in the file whose descriptor isfd to move topositionoffset , which is taken
relative to the location specified byorigin . Subsequent reading or writing will begin at that position.
offset is a long ; fd andorigin areint ’s. origin can be 0, 1, or 2 to specify thatoffset is to
be measured from the beginning, from the current position, or from the end of the file respectively. For
example, to append to a file, seek to the end before writing:

lseek(fd, 0L, 2);

To get back to the beginning (‘‘rewind’’),

lseek(fd, 0L, 0);

Notice the0L argument; it could also be written as(long) 0 .
With lseek , it is possible to treat files more or less like large arrays, at the price of slower access.

For example, the following simple function reads any number of bytes from any arbitrary place in a file.

get(fd, pos, buf, n) /* read n bytes from position pos */
int fd, n;
long pos;
char *buf;
{
lseek(fd, pos, 0);/* get to pos */
return(read(fd, buf, n));
}



-- --

- 9 -

In pre-version 7UNIX, the basic entry point to the I/O system is calledseek . seek is identical to
lseek , except that itsoffset argument is anint rather than along . Accordingly, sincePDP-11
integers have only 16 bits, theoffset specified forseek is limited to 65,535; for this reason,origin
values of 3, 4, 5 causeseek to multiply the given offset by 512 (the number of bytes in one physical
block) and then interpretorigin as if it were 0, 1, or 2 respectively. Thus to get to an arbitrary place in a
large file requires two seeks, first one which selects the block, then one which hasorigin equal to 1 and
moves to the desired byte within the block.

4.5. EErrrroorr PPrroocceessssiinngg
The routines discussed in this section, and in fact all the routines which are direct entries into the sys-

tem can incur errors. Usually they indicate an error by returning a value of −1. Sometimes it is nice to
know what sort of error occurred; for this purpose all these routines, when appropriate, leave an error num-
ber in the external cellerrno . The meanings of the various error numbers are listed in the introduction to
Section II of theUNIX Programmer’s Manual,so your program can, for example, determine if an attempt to
open a file failed because it did not exist or because the user lacked permission to read it. Perhaps more
commonly, you may want to print out the reason for failure. The routineperror will print a message
associated with the value oferrno ; more generally,sys errno is an array of character strings which
can be indexed byerrno and printed by your program.

5. PPRR OOCCEESSSSEESS
It is often easier to use a program written by someone else than to invent one’s own. This section

describes how to execute a program from within another.

5.1. TThhee ‘‘‘‘SSyysstteemm’’’’ FFuunnccttiioonn
The easiest way to execute a program from another is to use the standard library routinesystem .

system takes one argument, a command string exactly as typed at the terminal (except for the newline at
the end) and executes it. For instance, to time-stamp the output of a program,

main()
{
system("date");
/* rest of processing */
}

If the command string has to be built from pieces, the in-memory formatting capabilities ofsprintf may
be useful.

Remember thangetc andputc normally buffer their input; terminal I/O will not be properly syn-
chronized unless this buffering is defeated. For output, usefflush ; for input, seesetbuf in the
appendix.

5.2. LLoo ww--LLeevveell PPrroocceessss CCrreeaattiioonn —— EExxeeccll aanndd EExxeeccvv
If you’re not using the standard library, or if you need finer control over what happens, you will have to

construct calls to other programs using the more primitive routines that the standard library’ssystem rou-
tine is based on.

The most basic operation is to execute another programwithout returning, by using the routine
execl . To print the date as the last action of a running program, use

execl("/bin/date", "date", NULL);

The first argument toexecl is thefile nameof the command; you have to know where it is found in the
file system. The second argument is conventionally the program name (that is, the last component of the
file name), but this is seldom used except as a place-holder. If the command takes arguments, they are
strung out after this; the end of the list is marked by aNULLargument.

The execl call overlays the existing program with the new one, runs that, then exits. There isno
return to the original program.

More realistically, a program might fall into two or more phases that communicate only through tem-
porary files. Here it is natural to make the second pass simply anexecl call from the first.



-- --

- 10 -

The one exception to the rule that the original program never gets control back occurs when there is an
error, for example if the file can’t be found or is not executable. If you don’t know wheredate is located,
say

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole ’date’0);

A variant of execl calledexecv is useful when you don’t know in advance how many arguments
there are going to be. The call is

execv(filename, argp);

whereargp is an array of pointers to the arguments; the last pointer in the array must beNULLsoexecv
can tell where the list ends. As withexecl , filename is the file in which the program is found, and
argp[0] is the name of the program. (This arrangement is identical to theargv array for program argu-
ments.)

Neither of these routines provides the niceties of normal command execution. There is no automatic
search of multiple directories — you have to know precisely where the command is located. Nor do you
get the expansion of metacharacters like<, >, * , ?, and [] in the argument list. If you want these, use
execl to invoke the shellsh , which then does all the work. Construct a stringcommandline that con-
tains the complete command as it would have been typed at the terminal, then say

execl("/bin/sh", "sh", "-c", commandline, NULL);

The shell is assumed to be at a fixed place,/bin/sh . Its argument-c says to treat the next argument as a
whole command line, so it does just what you want. The only problem is in constructing the right informa-
tion in commandline .

5.3. CCoonnttrrooll ooff PPrroocceesssseess —— FFoorrkk aanndd WWaaiitt
So far what we’ve talked about isn’t really all that useful by itself. Now we will show how to reg ain

control after running a program withexecl or execv . Since these routines simply overlay the new pro-
gram on the old one, to save the old one requires that it first be split into two copies; one of these can be
overlaid, while the other waits for the new, overlaying program to finish. The splitting is done by a routine
calledfork :

proc_id = fork();

splits the program into two copies, both of which continue to run. The only difference between the two is
the value ofproc_id , the ‘‘process id.’’ In one of these processes (the ‘‘child’’),proc_id is zero. In
the other (the ‘‘parent’’),proc_id is non-zero; it is the process number of the child. Thus the basic way
to call, and return from, another program is

if (fork() == 0)
execl("/bin/sh", "sh", "-c", cmd, NULL);/* in child */

And in fact, except for handling errors, this is sufficient. Thefork makes two copies of the program. In
the child, the value returned byfork is zero, so it callsexecl which does thecommandand then dies.
In the parent,fork returns non-zero so it skips theexecl. (If there is any error,fork returns-1 ).

More often, the parent wants to wait for the child to terminate before continuing itself. This can be
done with the functionwait :

int status;

if (fork() == 0)
execl(...);
wait(&status);

This still doesn’t handle any abnormal conditions, such as a failure of theexecl or fork , or the possibil-
ity that there might be more than one child running simultaneously. (Thewait returns the process id of
the terminated child, if you want to check it against the value returned byfork .) Finally, this fragment
doesn’t deal with any funny behavior on the part of the child (which is reported instatus ). Still, these



-- --

- 11 -

three lines are the heart of the standard library’ssystem routine, which we’ll show in a moment.
Thestatus returned bywait encodes in its low-order eight bits the system’s idea of the child’s ter-

mination status; it is 0 for normal termination and non-zero to indicate various kinds of problems. The next
higher eight bits are taken from the argument of the call toexit which caused a normal termination of the
child process. It is good coding practice for all programs to return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up pointing at the
right files, and all other possible file descriptors are available for use. When this program calls another one,
correct etiquette suggests making sure the same conditions hold. Neitherfork nor theexec calls affects
open files in any way. If the parent is buffering output that must come out before output from the child, the
parent must flush its buffers before theexecl . Conversely, if a caller buffers an input stream, the called
program will lose any information that has been read by the caller.

5.4. PPiippeess
A pipe is an I/O channel intended for use between two cooperating processes: one process writes into

the pipe, while the other reads. The system looks after buffering the data and synchronizing the two pro-
cesses. Most pipes are created by the shell, as in

ls pr

which connects the standard output ofls to the standard input ofpr . Sometimes, however, it is most con-
venient for a process to set up its own plumbing; in this section, we will illustrate how the pipe connection
is established and used.

The system callpipe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:

intfd[2];

stat = pipe(fd);
if (stat == -1)
/* there was an error ... */

fd is an array of two file descriptors, wherefd[0] is the read side of the pipe andfd[1] is for writing.
These may be used inread , write andclose calls just like any other file descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes into a pipe
which is too full, it will wait until the pipe empties somewhat. If the write side of the pipe is closed, a sub-
sequentread will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen(cmd, mode) , which creates a processcmd (just assystem does), and returns a file descriptor
that will either read or write that process, according tomode. That is, the call

fout = popen("pr", WRITE);

creates a process that executes thepr command; subsequentwrite calls using the file descriptorfout
will send their data to that process through the pipe.

popen first creates the the pipe with apipe system call; it thenfork s to create two copies of itself.
The child decides whether it is supposed to read or write, closes the other side of the pipe, then calls the
shell (viaexecl ) to run the desired process. The parent likewise closes the end of the pipe it does not use.
These closes are necessary to make end-of-file tests work properly. For example, if a child that intends to
read fails to close the write end of the pipe, it will never see the end of the pipe file, just because there is
one writer potentially active.

#include <stdio.h>

#defineREAD0
#defineWRITE1
#definetst(a, b)(mode == READ ? (b) : (a))
staticintpopen_pid;

popen(cmd, mode)



-- --

- 12 -

char*cmd;
intmode;
{
int p[2];

if (pipe(p) < 0)
return(NULL);
if ((popen_pid = fork()) == 0) {
close(tst(p[WRITE], p[READ]));
close(tst(0, 1));
dup(tst(p[READ], p[WRITE]));
close(tst(p[READ], p[WRITE]));
execl("/bin/sh", "sh", "-c", cmd, 0);
_exit(1);/* disaster has occurred if we get here */
}
if (popen_pid == -1)
return(NULL);
close(tst(p[READ], p[WRITE]));
return(tst(p[WRITE], p[READ]));
}

The sequence ofclose s in the child is a bit tricky. Suppose that the task is to create a child process that
will read data from the parent. Then the firstclose closes the write side of the pipe, leaving the read side
open. The lines

close(tst(0, 1));
dup(tst(p[READ], p[WRITE]));

are the conventional way to associate the pipe descriptor with the standard input of the child. Theclose
closes file descriptor 0, that is, the standard input.dup is a system call that returns a duplicate of an
already open file descriptor. File descriptors are assigned in increasing order and the first available one is
returned, so the effect of thedup is to copy the file descriptor for the pipe (read side) to file descriptor 0;
thus the read side of the pipe becomes the standard input. (Yes, this is a bit tricky, but it’s a standard
idiom.) Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed to write from the par-
ent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a functionpclose to close the pipe created bypopen .
The main reason for using a separate function rather thanclose is that it is desirable to wait for the termi-
nation of the child process. First, the return value frompclose indicates whether the process succeeded.
Equally important when a process creates several children is that only a bounded number of unwaited-for
children can exist, even if some of them have terminated; performing thewait lays the child to rest. Thus:

#include <signal.h>

pclose(fd)/* close pipe fd */
int fd;
{
register r, (*hstat)(), (*istat)(), (*qstat)();
int status;
extern int popen_pid;

close(fd);
istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
hstat = signal(SIGHUP, SIG_IGN);
while ((r = wait(&status)) != popen_pid && r != -1);
if (r == -1)
status = -1;
signal(SIGINT, istat);
signal(SIGQUIT, qstat);



-- --

- 13 -

signal(SIGHUP, hstat);
return(status);
}

The calls tosignal make sure that no interrupts, etc., interfere with the waiting process; this is the topic
of the next section.

The routine as written has the limitation that only one pipe may be open at once, because of the single
shared variablepopen_pid ; it really should be an array indexed by file descriptor. Apopen function,
with slightly different arguments and return value is available as part of the standard I/O library discussed
below. As currently written, it shares the same limitation.

6. SSIIGGNN AALLSS —— IINNTTEERRRRUUPPTTSS AANNDD AALLLL TTHHAATT
This section is concerned with how to deal gracefully with signals from the outside world (like inter-

rupts), and with program faults. Since there’s nothing very useful that can be done from within C about
program faults, which arise mainly from illegal memory references or from execution of peculiar instruc-
tions, we’ll discuss only the outside-world signals:interrupt, which is sent when theDEL character is
typed;quit, generated by theFScharacter;hangup, caused by hanging up the phone; andterminate, gener-
ated by thekill command. When one of these events occurs, the signal is sent toall processes which were
started from the corresponding terminal; unless other arrangements have been made, the signal terminates
the process. In thequit case, a core image file is written for debugging purposes.

The routine which alters the default action is calledsignal . It has two arguments: the first specifies
the signal, and the second specifies how to treat it. The first argument is just a number code, but the second
is the address is either a function, or a somewhat strange code that requests that the signal either be ignored,
or that it be given the default action. The include filesignal.h gives names for the various arguments,
and should always be included when signals are used. Thus

#include <signal.h>
...

signal(SIGINT, SIG_IGN);

causes interrupts to be ignored, while

signal(SIGINT, SIG_DFL);

restores the default action of process termination. In all cases,signal returns the previous value of the
signal. The second argument tosignal may instead be the name of a function (which has to be declared
explicitly if the compiler hasn’t seen it already). In this case, the named routine will be called when the sig-
nal occurs. Most commonly this facility is used to allow the program to clean up unfinished business
before terminating, for example to delete a temporary file:

#include <signal.h>

main()
{
int onintr();

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal(SIGINT, onintr);

/* Process ... */

exit(0);
}

onintr()
{
unlink(tempfile);
exit(1);
}



-- --

- 14 -

Why the test and the double call tosignal ? Recall that signals like interrupt are sent toall processes
started from a particular terminal. Accordingly, when a program is to be run non-interactively (started by
&), the shell turns off interrupts for it so it won’t be stopped by interrupts intended for foreground pro-
cesses. If this program began by announcing that all interrupts were to be sent to theonintr routine
regardless, that would undo the shell’s effort to protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to ignore interrupts
if they are already being ignored. The code as written depends on the fact thatsignal returns the previ-
ous state of a particular signal. If signals were already being ignored, the process should continue to ignore
them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a request to stop
what it is doing and return to its own command-processing loop. Think of a text editor: interrupting a long
printout should not cause it to terminate and lose the work already done. The outline of the code for this
case is probably best written like this:

#include <signal.h>
#include <setjmp.h>
jmp_bufsjbuf;

main()
{
int (*istat)(), onintr();

istat = signal(SIGINT, SIG_IGN);/* save original status */
setjmp(sjbuf);/* save current stack position */
if (istat != SIG_IGN)
signal(SIGINT, onintr);

/* main processing loop */
}

onintr()
{
printf("0nterrupt0);
longjmp(sjbuf);/* return to saved state */
}

The include filesetjmp.h declares the typejmp_buf an object in which the state can be saved.
sjbuf is such an object; it is an array of some sort. Thesetjmp routine then saves the state of things.
When an interrupt occurs, a call is forced to theonintr routine, which can print a message, set flags, or
whatever. longjmp takes as argument an object stored into bysetjmp , and restores control to the loca-
tion after the call tosetjmp , so control (and the stack level) will pop back to the place in the main routine
where the signal is set up and the main loop entered. Notice, by the way, that the signal gets set again after
an interrupt occurs. This is necessary; most signals are automatically reset to their default action when they
occur.

Some programs that want to detect signals simply can’t be stopped at an arbitrary point, for example in
the middle of updating a linked list. If the routine called on occurrence of a signal sets a flag and then
returns instead of callingexit or longjmp , execution will continue at the exact point it was interrupted.
The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the terminal
when the interrupt is sent. The specified routine is duly called; it sets its flag and returns. If it were really
true, as we said above, that ‘‘execution resumes at the exact point it was interrupted,’’ the program would
continue reading the terminal until the user typed another line. This behavior might well be confusing,
since the user might not know that the program is reading; he presumably would prefer to have the signal
take effect instantly. The method chosen to resolve this difficulty is to terminate the terminal read when
execution resumes after the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for ‘‘errors’’ which
are caused by interrupted system calls. (The ones to watch out for are reads from a terminal,wait , and



-- --

- 15 -

pause .) A program whoseonintr program just setsintflag , resets the interrupt signal, and returns,
should usually include code like the following when it reads the standard input:

if (getchar() == EOF)
if (intflag)
/* EOF caused by interrupt */
else
/* true end-of-file */

A final subtlety to keep in mind becomes important when signal-catching is combined with execution
of other programs. Suppose a program catches interrupts, and also includes a method (like ‘‘!’’ in the edi-
tor) whereby other programs can be executed. Then the code should look something like this:

if (fork() == 0)
execl(...);
signal(SIGINT, SIG_IGN);/* ignore interrupts */
wait(&status);/* until the child is done */
signal(SIGINT, onintr);/* restore interrupts */

Why is this? Again, it’s not obvious but not really difficult. Suppose the program you call catches its own
interrupts. If you interrupt the subprogram, it will get the signal and return to its main loop, and probably
read your terminal. But the calling program will also pop out of its wait for the subprogram and read your
terminal. Having two processes reading your terminal is very unfortunate, since the system figuratively
flips a coin to decide who should get each line of input. A simple way out is to have the parent program
ignore interrupts until the child is done. This reasoning is reflected in the standard I/O library function
system :

#include <signal.h>

system(s)/* run command string s */
char *s;
{
int status, pid, w;
register int (*istat)(), (*qstat)();

if ((pid = fork()) == 0) {
execl("/bin/sh", "sh", "-c", s, 0);
_exit(127);
}
istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
while ((w = wait(&status)) != pid && w != -1)
;
if (w == -1)
status = -1;
signal(SIGINT, istat);
signal(SIGQUIT, qstat);
return(status);
}

As an aside on declarations, the functionsignal obviously has a rather strange second argument. It
is in fact a pointer to a function delivering an integer, and this is also the type of the signal routine itself.
The two valuesSIG_IGN andSIG_DFL have the right type, but are chosen so they coincide with no pos-
sible actual functions. For the enthusiast, here is how they are defined for the PDP-11; the definitions
should be sufficiently ugly and nonportable to encourage use of the include file.

#defineSIG_DFL(int (*)())0
#defineSIG_IGN(int (*)())1



-- --

- 16 -

RReeffeerreenncceess
[1] K. L. Thompson and D. M. Ritchie,TheUNIX Programmer’s Manual,Bell Laboratories, 1978.
[2] B. W. Kernighan and D. M. Ritchie,The C Programming Language,Prentice-Hall, Inc., 1978.
[3] B. W. Kernighan, ‘‘UNIX for Beginners — Second Edition.’’ Bell Laboratories, 1978.



-- --

- 17 -

Appendix — The Standard I/O Library

D. M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

The standard I/O library was designed with the following goals in mind.
1. It must be as efficient as possible, both in time and in space, so that there will be no hesitation in using

it no matter how critical the application.
2. It must be simple to use, and also free of the magic numbers and mysterious calls whose use mars the

understandability and portability of many programs using older packages.
3. The interface provided should be applicable on all machines, whether or not the programs which

implement it are directly portable to other systems, or to machines other than the PDP-11 running a
version ofUNIX.

11.. GGeenneerraall UUssaaggee
Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no special library
argument is needed for loading. All names in the include file intended only for internal use begin with an
underscore_ to reduce the possibility of collision with a user name. The names intended to be visible out-
side the package are
stdin The name of the standard input file
stdout The name of the standard output file
stderr The name of the standard error file
EOF is actually −1, and is the value returned by the read routines on end-of-file or error.
NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an error
FILE expands tostruct _iob and is a useful shorthand when declaring pointers to streams.
BUFSIZ is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user. Seesetbuf ,

below.
getc, getchar, putc, putchar, feof, ferror, fileno

are defined as macros. Their actions are described below; they are mentioned here to point out
that it is not possible to redeclare them and that they are not actually functions; thus, for exam-
ple, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and output flushing
where appropriate. The namesstdin , stdout , andstderr are in effect constants and may not be
assigned to.

22.. CCaallllss

FILE *fopen(filename, type) char *filename, *type;
opens the file and, if needed, allocates a buffer for it.filename is a character string specifying the
name. type is a character string (not a single character). It may be"r" , "w" , or "a" to indicate
intent to read, write, or append. The value returned is a file pointer. If it isNULL the attempt to open
failed.

FILE *freopen(filename, type, ioptr) char *filename, *type; FILE *ioptr;
The stream named byioptr is closed, if necessary, and then reopened as if byfopen . If the
attempt to open fails,NULL is returned, otherwiseioptr , which will now refer to the new file. Often
the reopened stream isstdin or stdout .

int getc(ioptr) FILE *ioptr;
returns the next character from the stream named byioptr , which is a pointer to a file such as
returned byfopen , or the namestdin . The integerEOFis returned on end-of-file or when an error
occurs. The null character\0 is a legal character.



-- --

- 18 -

int fgetc(ioptr) FILE *ioptr;
acts likegetc but is a genuine function, not a macro, so it can be pointed to, passed as an argument,
etc.

putc(c, ioptr) FILE *ioptr;
putc writes the characterc on the output stream named byioptr , which is a value returned from
fopen or perhapsstdout or stderr . The character is returned as value, butEOFis returned on
error.

fputc(c, ioptr) FILE *ioptr;
acts likeputc but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptr;
The file corresponding toioptr is closed after any buffers are emptied. A buffer allocated by the I/O
system is freed.fclose is automatic on normal termination of the program.

fflush(ioptr) FILE *ioptr;
Any buffered information on the (output) stream named byioptr is written out. Output files are nor-
mally buffered if and only if they are not directed to the terminal; however,stderr always starts off
unbuffered and remains so unlesssetbuf is used, or unless it is reopened.

exit(errcode);
terminates the process and returns its argument as status to the parent. This is a special version of the
routine which callsfflush for each output file. To terminate without flushing, use_exit .

feof(ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE *ioptr;
returns non-zero when an error has occurred while reading or writing the named stream. The error
indication lasts until the file has been closed.

getchar();
is identical togetc(stdin) .

putchar(c);
is identical toputc(c, stdout) .

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up ton-1 characters from the streamioptr into the character pointers . The read terminates
with a newline character. The newline character is placed in the buffer followed by a null character.
fgets returns the first argument, orNULL if error or end-of-file occurred.

fputs(s, ioptr) char *s; FILE *ioptr;
writes the null-terminated string (character array)s on the streamioptr . No newline is appended.
No value is returned.

ungetc(c, ioptr) FILE *ioptr;
The argument characterc is pushed back on the input stream named byioptr . Only one character
may be pushed back.

printf(format, a1, ...) char *format;
fprintf(ioptr, format, a1, ...) FILE *ioptr; char *format;
sprintf(s, format, a1, ...)char *s, *format;

printf writes on the standard output.fprintf writes on the named output stream.sprintf
puts characters in the character array (string) named bys . The specifications are as described in sec-
tion printf (3) of theUNIX Programmer’s Manual.

scanf(format, a1, ...) char *format;
fscanf(ioptr, format, a1, ...) FILE *ioptr; char *format;
sscanf(s, format, a1, ...) char *s, *format;



-- --

- 19 -

scanf reads from the standard input.fscanf reads from the named input stream.sscanf reads
from the character string supplied ass . scanf reads characters, interprets them according to a for-
mat, and stores the results in its arguments. Each routine expects as arguments a control string
format , and a set of arguments,each of which must be a pointer,indicating where the converted
input should be stored.

scanf returns as its value the number of successfully matched and assigned input items. This can be
used to decide how many input items were found. On end of file,EOFis returned; note that this is dif-
ferent from 0, which means that the next input character does not match what was called for in the con-
trol string.

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
readsnitems of data beginning atptr from file ioptr . No advance notification that binary I/O is
being done is required; when, for portability reasons, it becomes required, it will be done by adding an
additional character to the mode-string on thefopen call.

fwrite(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
Like fread , but in the other direction.

rewind(ioptr) FILE *ioptr;
rewinds the stream named byioptr . It is not very useful except on input, since a rewound output file
is still open only for output.

system(string) char *string;
Thestring is executed by the shell as if typed at the terminal.

getw(ioptr) FILE *ioptr;
returns the next word from the input stream named byioptr . EOFis returned on end-of-file or error,
but since this a perfectly good integerfeof andferror should be used. A ‘‘word’’ is 16 bits on the
PDP-11.

putw(w, ioptr) FILE *ioptr;
writes the integerw on the named output stream.

setbuf(ioptr, buf) FILE *ioptr; char *buf;
setbuf may be used after a stream has been opened but before I/O has started. Ifbuf is NULL, the
stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a character array of
sufficient size:

charbuf[BUFSIZ];

fileno(ioptr) FILE *ioptr;
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptr; long offset;
The location of the next byte in the stream named byioptr is adjusted.offset is a long integer.
If ptrname is 0, the offset is measured from the beginning of the file; ifptrname is 1, the offset is
measured from the current read or write pointer; ifptrname is 2, the offset is measured from the end
of the file. The routine accounts properly for any buffering. (When this routine is used on non-UNIX
systems, the offset must be a value returned fromftell and the ptrname must be 0).

long ftell(ioptr) FILE *ioptr;
The byte offset, measured from the beginning of the file, associated with the named stream is returned.
Any buffering is properly accounted for. (On non-UNIX systems the value of this call is useful only for
handing tofseek , so as to position the file to the same place it was whenftell was called.)

getpw(uid, buf) char *buf;
The password file is searched for the given integer user ID. If an appropriate line is found, it is copied
into the character arraybuf , and 0 is returned. If no line is found corresponding to the user ID then 1
is returned.



-- --

- 20 -

char *malloc(num);
allocatesnum bytes. The pointer returned is sufficiently well aligned to be usable for any purpose.
NULL is returned if no space is available.

char *calloc(num, size);
allocates space fornum items each of sizesize . The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose.NULL is returned if no space is avail-
able .

cfree(ptr) char *ptr;
Space is returned to the pool used bycalloc . Disorder can be expected if the pointer was not
obtained fromcalloc .

The following are macros whose definitions may be obtained by including<ctype.h> .

isalpha(c) returns non-zero if the argument is alphabetic.

isupper(c) returns non-zero if the argument is upper-case alphabetic.

islower(c) returns non-zero if the argument is lower-case alphabetic.

isdigit(c) returns non-zero if the argument is a digit.

isspace(c) returns non-zero if the argument is a spacing character: tab, newline, carriage return, verti-
cal tab, form feed, space.

ispunct(c) returns non-zero if the argument is any punctuation character, i.e., not a space, letter, digit
or control character.

isalnum(c) returns non-zero if the argument is a letter or a digit.

isprint(c) returns non-zero if the argument is printable — a letter, digit, or punctuation character.

iscntrl(c) returns non-zero if the argument is a control character.

isascii(c) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.

toupper(c) returns the upper-case character corresponding to the lower-case letterc.

tolower(c) returns the lower-case character corresponding to the upper-case letterc .


