A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

troff is a text-formatting program for driving the Graphic Systems phototypesetter on the

UNIX T
andGCOSoperating systems. This device is capable of producing high quality text; this paper is an examwible of
output.
The phototypesetter itself normally runs with four fonts, containing roman, italic and bold letters (as on this page), a
full greek alphabet, and a substantial number of special characters and mathematical symbols. Characters can be
printed in a range of sizes, and placed anywhere on the page.
troff allows the user full control over fonts, sizes, and character positions, as well as the usual features of a format-
ter — right-margin justification, automatic hyphenation, page titing and numbering, and so on. It also provides
macros, arithmetic variables and operations, and conditional testing, for complicated formatting tasks.
This document is an introduction to the most basic ugeofff. It presents just enough information to enable the
user to do simple formatting tasks like making viewgraphs, and to make incremental changes to existing packages of
troff commands. In most respects, theiX formatternroff is identical totroff , so this document also serves as a
tutorial onnroff.

November 2, 1997

TUNIX is a Trademark of Bell Laboratories.

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction
troff [1] is a text-formatting program, written by J. F.
Ossanna, for producing high-quality printed output
from the phototypesetter on thaIX and GCOSoper-
ating systems. This document is an exampléraff
output.

The single most important rule of usitrgff is not to
use it directly, but through some intermediary. In many
ways, troff resembles an assembly language — a
remarkably powerful and flexible one — but nonethe-
less such that many operations must be specified at a
level of detail and in a form that is too hard for most
people to use effectively.

For two special applications, there are programs that
provide an interface ttroff for the majority of users.
eqn [2] provides an easy to learn language for typeset-
ting mathematics; theqn user need know naroff
whatsoever to typeset mathematiakl [3] provides
the same convenience for producing tables of arbitrary
complexity.

For producing straight text (which may well contain
mathematics or tables), there are a number of ‘macro
packages’ that define formatting rules and operations
for specific styles of documents, and reduce the amount
of direct contact withroff . In particular, the ‘-ms’ [4]
and PWB/MM [5] packages for Bell Labs internal
memoranda and external papers provide most of the
facilities needed for a wide range of document prepara-
tion. (This memo was prepared with ‘-ms’.) There are
also packages for viewgraphs, for simulating the older
roff formatters onUNIX andGCOS and for other spe-
cial applications. Typically you will find these pack-
ages easier to use thaoff once you get beyond the
most trivial operations; you should always consider
them first.

In the few cases where existing packages don't do the
whole job, the solution isot to write an entirely new
set oftroff instructions from scratch, but to make small
changes to adapt packages that already exist.

In accordance with this philosophy of letting someone
else do the work, the part wbff described here is only

a small part of the whole, although it tries to concen-
trate on the more useful parts. In any case, there is no
attempt to be complete. Rather, the emphasis is on
showing how to do simple things, and how to make
incremental changes to what already exists. The con-

tents of the remaining sections are:

Point sizes and line spacing

Fonts and special characters
Indents and line length

Tabs

Local motions: Drawing lines and characters
Strings

Introduction to macros

Titles, pages and numbering

10. Number registers and arithmetic
11. Macros with arguments

12. Conditionals

13. Environments

14. Diversions

Appendix: Typesetter character set

©CoNOOA~WN

Thetroff described here is the C-language version run-
ning onUNIX at Murray Hill, as documented in [1].

To usetroff you have to prepare not only the actual
text you want printed, but some information that tells
how you want it printed. (Readers who us#f will

find the approach familiar.) Faroff the text and the
formatting information are often intertwined quite inti-
mately. Most commands tiwoff are placed on a line
separate from the text itself, beginning with a period
(one command per line). For example,

Some text.
.ps 14
Some more text.

will change the ‘point size’, that is, the size of the let-
ters being printed, to ‘14 point’ (one point is 1/72 inch)
like this:

Some text. SOMe more text.

Occasionally, though, something special occurs in the
middle of a line — to produce

Area =7 2
you have to type
Area = \(P\fINfR\|\s8\u2\d\sO

(which we will explain shortly). The backslash charac-
ter \is used to introducé&roff commands and special
characters within a line of text.

2. Point Sizes; Line Spacing

As mentioned above, the commamps gats the point
size. One point is 1/72 inch, so 6-point characters are
at most 1/12 inch high, and 36-point characters¥are
inch. There are 15 point sizes, listed below.

6 point: Pack my box with five dozen liquor jugs.

7 point: Pack my box with five dozen liquor jugs.

8 point: Pack my box with five dozen liquor jugs.

9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor

11 point: Pack my box with five dozen
12 point: Pack my box with five dozen

14 point: Pack my box with five
16 point18 point20 point

222428 30

If the number afterppss not one of these legal sizes, it
is rounded up to the next valid value, with a maximum
of 36. If no number followsppgroff reverts to the pre-
vious size, whatever it wagroff begins with point size
10, which is usually fine. This document is in 9 point.
The point size can also be changed in the middle of a
line or even a word with the in-line commaksl &
produce

UNIX runs on &brP11/45

type
\s8UNIX\s10 runs on a \s8PDP-\s1011/45

As above\&sshould be followed by a legal point size,
except thatd8Qcauses the size to revert to its previous
value. Notice thaiss0D1lcan be understood correctly
as ‘size 10, followed by an 11, if the size is legal, but
not otherwise. Be cautious with similar constructions.
Relative size changes are also legal and useful:

\s—2UNIX\s+2

temporarily decreases the size, whatever it is, by two

points, then restores it. Relative size changes have the
advantage that the size difference is independent of the
starting size of the document. The amount of the rela-

tive change is restricted to a single digit.

The other parameter that determines what the type
looks like is the spacing between lines, which is set
independently of the point size. Vertical spacing is
measured from the bottom of one line to the bottom of
the next. The command to control vertical spacing is
.vs. For running text, it is usually best to set the vertical
spacing about 20% bigger than the character size. For
example, so far in this document, we have used “9 on
117, that is,

.ps 9
.vs 11p

If we changed to

.ps 9

.vs 9p
the running text would look like this. After a few lines,
you will agree it looks a little cramped. The right verti-
cal spacing is partly a matter of taste, depending on
how much text you want to squeeze into a given space,
and partly a matter of traditional printing style. By
default,troff uses 10 on 12.

Point size and vertical spacing make a
substantial difference in the amount of
text per square inch. This is 12 on 14.

Point size and vertical spacing make a substantial difference in the amount of text
per square inch. For example, 10 on 12 uses about twice as much space as 7 on 8.
This is 6 on 7, which is even smaller. It packs a lot more words per line, but you
can go blind trying to read it.

When used without argumentps.padvsgevert to the
previous size and vertical spacing respectively.

The commandssps used to get extra vertical space.
Unadorned, it gives you one extra blank line (org .vs
whatever that has been set to). Typically, that's more or
less than you want, sepsgan be followed by informa-
tion about how much space you want —

.Sp 2i

means ‘two inches of vertical space’.
.Sp 2p

means ‘two points of vertical space’; and
Sp2

means ‘two vertical spaces’ — two of whateves igs
set to (this can also be made explicit with Zp);2off
also understands decimal fractions in most places, so

.sp 1.5i

is a space of 1.5 inches. These same scale factors can
be used aftevs/$o define line spacing, and in fact after
most commands that deal with physical dimensions.

It should be noted that all size numbers are converted
internally to ‘machine units’, which are 1/432 inch (1/6
point). For most purposes, this is enough resolution
that you don't have to worry about the accuracy of the
representation. The situation is not quite so good verti-
cally, where resolution is 1/144 inch (1/2 point).

3. Fonts and Special Characters

troff and the typesetter allow four different fonts at
any one time. Normally three fonts (Times roman,
italic and bold) and one collection of special characters
are permanently mounted.

abcdefghijkimnopqgrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany of the

special font are listed in Appendix A.
troff prints in roman unless told otherwise. To switch
into bold, use theftttommand

ftB
and for italics,
ft

To return to roman, usé R;Ro return to the previous
font, whatever it was, use eithet Ftér just.fft The
‘underline’ command

.ul

causes the next input line to print in italicsl cain be
followed by a count to indicate that more than one line
is to be italicized.

Fonts can also be changed within a line or word with
the in-line commantf:\f

boldfacetext
is produced by
\fBbold\flface\fR text

If you want to do this so the previous font, whatever it
was, is left undisturbed, insert extf ¥Bmmands, like
this:

\fBbold\fP\flface\fP\fR text\fP

Because only the immediately previous font is remem-
bered, you have to restore the previous font after each
change or you can lose it. The same is trugsfapd

.vs when used without an argument.

There are other fonts available besides the standard set,
although you can still use only four at any given time.
The commandfpfgells troff what fonts are physically
mounted on the typesetter:

fp3H

says that the Helvetica font is mounted on position 3.
(For a complete list of fonts and what they look like,
see thetroff manual.) Appropriate.fpfpcommands
should appear at the beginning of your document if you
do not use the standard fonts.

It is possible to make a document relatively indepen-
dent of the actual fonts used to print it by using font
numbers instead of names; for exampia, afgl .fit38
mean ‘whatever font is mounted at position 3', and thus
work for any setting. Normal settings are roman font
on 1, italic on 2, bold on 3, and special on 4.

There is also a way to get ‘synthetic’ bold fonts by
overstriking letters with a slight offset. Look at tlel .bd
command in [1].

Special characters have four-character names begin-
ning with Y and they may be inserted anywhere. For
example,

Ya+ Y=
is produced by

\(14 +\(12 = \(34

In particular, greek letters are all of the fongiH\(
where—is an upper or lower case roman letter reminis-
cent of the greek. Thus to get

S(axp) -
in baretroff we have to type
\(CB\@\(mu\(h) \(—> \(if

That line is unscrambled as follows:

\([B >

((

\(Ca a

\(mu X

\(Ch B

))

\(—> -

\(if)
A complete list of these special names occurs in
Appendix A.

In eqn [2] the same effect can be achieved with the
input

SIGMA (alpha times beta) —> inf

which is less concise, but clearer to the uninitiated.
Notice that each four-character name is a single char-
acter as far agoff is concerned — the ‘translate’ com-
mand

tr\(mi\(em
is perfectly clear, meaning
Ar—

that is, to translate into —.
Some characters are automatically translated into oth-
ers: grave ~ and acute ~ accents (apostrophes) become

i~

open and close single quotes “’; the combination of
“..." is generally preferable to the double quotes "...".

Similarly a typed minus sign becomes a hyphen -. To
print an explicit — sign, usé&.\-To get a backslash

printed, uséde

4. Indents and Line Lengths

troff starts with a line length of 6.5 inches, too wide
for 8%2x11 paper. To reset the line length, use the .l
command, as in

Al 6i

As with _sp, the actual length can be specified in several
ways; inches are probably the most intuitive.

The maximum line length provided by the typesetter is
7.5 inches, by the way. To use the full width, you will
have to reset the default physical left margin (“page
offset”), which is normally slightly less than one inch
from the left edge of the paper. This is done by.fite .po
command.

.po 0

sets the offset as far to the left as it will go.

The indent commandn.inauses the left margin to be
indented by some specified amount from the page off-
set. If we useinirto novethe left margin in, andl.tb
move the right margin to the left, we can make offset
blocks of text:

.in 0.3i

A -0.3i

text to be set into a block
Al +0.3i

.in-0.3i

will create a block that looks like this:

Pater noster qui est in caelis sanctificetur
nomen tuum; adveniat regnum tuum; fiat
voluntas tua, sicut in caelo, et in terra. ...
Amen.

Notice the use of '+ and-" to specify the amount of
change. These change the previous setting by the spec-
ified amount, rather than just overriding it. The distinc-
tion is quite important.ll.k*ilimakes lines one inch
longer;.llITiimakes them one indbng.

With .in, .l and .jpm the previous value is used if no
argument is specified.

To indent a single line, use the ‘temporary indent’
commandtitiFor example, all paragraphs in this memo
effectively begin with the command

i3

Three of what? The default unit fdr, .As for most hor-
izontally oriented commandsli(.lin, .po), is ems; an
em is roughly the width of the letter ‘m’ in the current
point size. (Precisely, a em in sige is p points.)
Although inches are usually clearer than ems to people
who don't set type for a living, ems have a place: they
are a measure of size that is proportional to the current
point size. If you want to make text that keeps its pro-
portions regardless of point size, you should use ems
for all dimensions. Ems can be specified as scale fac-
tors directly, as intittB5Bm

Lines can also be indented negatively if the indent is
already positive:

i —-0.3i

causes the next line to be moved back three tenths of an
inch. Thus to make a decorative initial capital, we
indent the whole paragraph, therove the letter ‘P’
back with atitcommand:

ter noster qui est in caelis sanctifice-
gur nomen tuum; adveniat regnum

tuum; fiat voluntas tua, sicut in caelo,
etin terra. ... Amen.

Of course, there is also some trickery to make the ‘P’
bigger (just a \s36P\s0’), and toowe it downfrom its
normal position (see the section on local motions).

5. Tabs
Tabs (theAascCll ‘horizontal tab’ character) can be used
to produce output in columns, or to set the horizontal
position of output. Typically tabs are used only in
unfilled text. Tab stops are set by default every half
inch from the current indent, but can be changed by the
.ta command. To set stops every inch, for example,

.ta 1i 2i 3i 4i 5i 6i
Unfortunately the stops are left-justified only (as on a
typewriter), so lining up columns of right-justified
numbers can be painful. If you have many numbers, or
if you need more complicated table layodgn't use
troff directly; use thébl program described in [3].
For a handful of numeric columns, you can do it this

way: Precede every number by enough blanks to make
it line up when typed.

.nf
ta 1i 2i 3i

ltab 2tab 3
40 tab 50 tab 60
700 tab 800 tab 900
fi

Then change each leading blank into the stfhd ks
is a character that does not print, but that has the same
width as a digit. When printed, this will produce

1 2 3
40 50 60
700 800 900

It is also possible to fill up tabbed-over space with
some character other than blanks by setting the ‘tab
replacement character’ with thte command:

.ta 1.5i 2.5i
e \(ru (Mruis ™"
Nametab Age tab
produces
Name Age

To reset the tab replacement character to a blank, use
.tc with no argument. (Lines can also be drawn with
theWlcommand, described in Section 6.)

troff also provides a very general mechanism called
‘fields’ for setting up complicated columns. (This is
used bythl). We will not go into it in this paper.

6. Local Motions: Drawing lines and characters
Remember ‘Area ™" and the big ‘P’ in the Pater-
noster. How are they done®off provides a host of
commands for placing characters of any size at any
place. You can use them to draw special characters or
to tune your output for a particular appearance. Most
of these commands are straightforward, but messy to
read and tough to type correctly.

If you won'’t useeqn, subscripts and superscripts are
most easily done with the half-line local motidnsand

\d. To go back up the page half a point-size, ins&éut a \u

at the desired place; to go down, insettl.atal and\td
should always be used in pairs, as explained below.)
Thus

Area = \((pr\u2\d

produces

Area =112
To make the ‘2’ smaller, bracket it with48=2s0sSince

\u and\tdrefer to the current point size, be sure to put
them either both inside or both outside the size
changes, or you will get an unbalanced vertical motion.
Sometimes the space given Yoydod\iHisn't the right
amount. Théwwcommand can be used to request an
arbitrary amount of vertical motion. The in-line com-
mand

\v’(amount)’

causes motion up or down the page by the amount
specified in ‘(amount)’. For example, toowe the ‘P’
down, we used

.in +0.6i (move paragraph in)
AI'-0.3i (shorten lines)
1i—0.3i (move Pback)
\v"2"\s36P\s0\v" -2 ater noster qui est
in caelis ...

A minus sign causes upward motion, while no sign or a
plus sign means down the page. Thdis2vcauses an
upward vertical motion of two line spaces.

There are many other ways to specify the amount of
motion —

\v0.1i"

\v'3p”

\v'-0.5m’
and so on are all legal. Notice that the scale specifier i
or p orm goes inside the quotes. Any character can be
used in place of the quotes; this is also true of all other
troff commands described in this section.
Since troff does not take within-the-line vertical
motions into account when figuring out where it is on
the page, output lines can have unexpected positions if
the left and right ends aren't at the same vertical posi-
tion. Thus\Ww like \u and\&j should always balance
upward vertical motion in a line with the same amount
in the downward direction.
Arbitrary horizontal motions are also available\h-idh
quite analogous tiv\except that the default scale fac-
tor is ems instead of line spaces. As an example,

\h"-0.1i"

causes a backwards motion of a tenth of an inch. As a
practical matter, consider printing the mathematical
symbol >>'. The default spacing is too wide, egn
replaces this by

>\h"-0.3m">

to produce>>

Frequently\khis used with the ‘width functioniwwo
generate motions equal to the width of some character
string. The construction

\w’thing”
is a number equal to the width of ‘thing’ in machine
units (1/432 inch). Alltroff computations are ulti-

mately done in these units. Toome horizontally the
width of an ‘x’, we can say

\h"\w'x"u”
As we mentioned above, the default scale factor for all
horizontal dimensions isipems, so here we must have
the wfor machine units, or the motion produced will be
far too large. troff is quite happy with the nested
guotes, by the way, so long as you don't leave any out.
As a live example of this kind of construction, all of
the command names in the text, lisp,.spere done by
overstriking with a slight offset. The commands &p .sp
are

.sp\h"=\w".sp’u"\h"1u’.sp

That is, put out ‘.sp’, owve left by the width of ‘.sp’,
move right 1 unit, and print ‘.sp’ again. (Of course
there is a way to avoid typing that much input for each
command name, which we will discuss in Section 11.)

There are also several special-purpivs# commands

for local motion. We have already séén Wwhich is an
unpaddable white space of the same width as a digit.
‘Unpaddable’ means that it will never be widened or
split across a line by line justification and filling. There
is also\{blank), which is an unpaddable character the
width of a spacé\|\which is half that width\"\'which

is one quarter of the width of a space, &kdwhich

has zero width. (This last one is useful, for example, in
entering a text line which would otherwise begin with a
)
The commandooused like

\o"set of characters’

causes (up to 9) characters to be overstruck, centered
on the widest. This is nice for accents, as in

syst\o"e\(ga"me t\o"e\(aa"\o"e\(aa"phonique
which makes
systene tdéphonique

The accents argdégand\{@aa or\\"and\{; remember

that each is just one charactetrff .

You can make your own overstrikes with another spe-
cial convention\azthe zero-motion commandizx\axp-
presses the normal horizontal motion after printing the
single charactex,xso another character can be laid on
top of it. Although sizes can be changed witkan ito
centers the characters on the widest, and there can be
no horizontal or vertical motions, $o hzay be the only
way to get what you want:

-6-

produced

.sp2

t\[e\“ephone.
If a string must begin with blanks, define it as

dsxx" text

The double quote signals the beginning of the defini-

\s8\z\(sq\s14\z\(sq\s22\z\(sq\s36\(sgjon. There is no trailing quote; the end of the line ter-

The.gpis needed to leave room for the result.
As another example, an extra-heavy semicolon that
looks like

; instead of ; or,

can be constructed with a big comma and a big period
above it:

\s+6\z,\v=0.25m".\v'0.25m"\s0

‘0.25m’ is an empirical constant.

A more ornate overstrike is given by the bracketing

function My which piles up characters vertically, cen-

tered on the current baseline. Thus we can get big
brackets, constructing them with piled-up smaller
pieces:

o .o
Dgx EIZI
ot Hg

by typing in only this:

.Sp
D \IAV(IK\IB " \DAICV(IF X b \(re\(rf \D\(rt\(rk\(rb!

troff also provides a convenient facility for drawing
horizontal and vertical lines of arbitrary length with
arbitrary characters\I'li' draws a line one inch long,
like this: . The length can be fol-
lowed by the character to use if the isn't appropriate;
\I'0.5i! draws a half-inch line of dots: The
construction\l\Lis entirely analogous, except that it
draws a vertical line instead of horizontal.

7. Strings

Obviously if a paper contains a large number of occur-
rences of an acute accent over a letter ‘e’, typirig\lv"e\™"
for each’avould be a great nuisance.

Fortunately,troff provides a way in which you can
store an arbitrary collection of text in a ‘string’, and
thereafter use the string name as a shorthand for its
contents. Strings are one of sevdraff mechanisms
whose judicious use lets you type a document with less
effort and organize it so that extensive format changes
can be made with few editing changes.

A reference to a string is replaced by whatever text the
string was defined as. Strings are defined with the
commandddsThe line

.ds e \o"e\"™"

defines the string ® have the valu@teVe\™"

String names may be either one or two characters long,
and are referred to byX for one character names or
\(Qxy for two character names. Thus to gééphone,
given the definition of the string & above, we can say

minates the string.

A string may actually be several lines long;trbff
encounters a at the end ofnyline, it is thrown away
and the next line added to the current one. So you can
make a long string simply by ending each line but the
last with a backslash:

.ds xx this \
is avery\
long string

Strings may be defined in terms of other strings, or
even in terms of themselves; we will discuss some of
these possibilities later.

8. Introduction to Macros

Before we can go much further troff, we need to
learn a bit about the macro facility. In its simplest
form, a macro is just a shorthand notation quite similar
to a string. Suppose we want every paragraph to start
in exactly the same way — with a space and a tempo-
rary indent of two ems:

.sp
i +2m

Then to save typing, we would like to collapse these
into one shorthand line,teoff ‘command’ like

PP
that would be treated hyoff exactly as

.sp
i +2m

.PP is called anacro. The way we teltroff what [P
means is talefineit with the .gke command:

.de PP

.Sp
i +2m

The first line names the macro (we us&P".R® ‘para-
graph’, and upper case so it wouldn't conflict with any
name thatroff might already know about). The last
line .. marks the end of the definition. In between is the
text, which is simply inserted wheneveoff sees the
‘command’ or macro call

PP

A macro can contain any mixture of text and formatting
commands.

The definition of. F#Phas to precede its first use; unde-
fined macros are simply ignored. Names are restricted
to one or two characters.

Using macros for commonly occurring sequences of
commands is critically important. Not only does it save
typing, but it makes later changes much easier. Sup-
pose we decide that the paragraph indent is too small,
the vertical space is much too big, and roman font
should be forced. Instead of changing the whole docu-
ment, we need only change the definition.BP .RP
something like

.de PP \" paragraph macro
.Sp 2p

i +3m

ftR

and the change takes effect everywhere we 1&ed .PP

\" is atroff command that causes the rest of the line to
be ignored. We use it here to add comments to the
macro definition (a wise idea once definitions get com-
plicated).

As another example of macros, consider these two
which start and end a block of offset, unfilled text, like
most of the examples in this paper:

.de BS \" start indented block
.Sp

.nf

.in +0.3i

.de BE \" end indented block
.Sp

fi

.in-0.3i

Now we can surround text like

Copy to

John Doe
Richard Roberts
Stanley Smith

by the commandB8&nd.BEE and it will come out as

it did above. Notice that we indented bin 40.30.3i

instead of.innD03Ri This way we can nest our uses of

.BS andBEEt0 get blocks within blocks.

If later on we decide that the indent should be 0.5i,
then it is only necessary to change the definitions of
.BS and BEE not the whole paper.

9. Titles, Pages and Numbering

This is an area where things get tougher, because noth-
ing is done for you automatically. Of necessity, some
of this section is a cookbook, to be copied literally until
you get some experience.

Suppose you want a title at the top of each page, say-
ing just

“left top

In roff,, one can say

center top right top™ ™"

.he “left top”center top right top”
.fo “left bottom”center bottom’right bottom’

to get headers and footers automatically on every page.
Alas, this doesn't work irroff , a serious hardship for
the novice. Instead you have to do a lot of specifica-
tion.

You have to say what the actual title is (easy); when to
print it (easy enough); and what to do at and around the
title line (harder). Taking these in reverse order, first
we define a macroN®Ffor ‘new page’) to process titles
and the like at the end of one page and the beginning of
the next:

.de NP

lbp

'sp 0.5i

.tl “left top”center topright top”
'sp 0.3i

To make sure we're at the top of a page, we issue a
‘begin page’ commantbp, which causes a skip to top-
of-page (we’ll explain thé shortly). Then we space
down half an inch, print the title (the use .tfsitiould

be self explanatory; later we will discuss parameteriz-
ing the titles), space another 0.3 inches, and we're
done.

To ask for.NNPat the bottom of each page, we have to
say something like ‘when the text is within an inch of
the bottom of the page, start the processing for a new
page.’ This is done with a ‘when’ commaineh:wh

.wh -1i NP

(No ‘. is used before NP; this is simply the name of a

macro, not a macro call.) The minus sign means ‘mea-
sure up from the bottom of the page’, so ‘-1i" means

‘one inch from the bottom’.

The .wiincommand appears in the input outside the def-
inition of .NP; typically the input would be

.de NP

.wh -1i NP
Now what happens? As text is actually being output,
troff keeps track of its vertical position on the page,
and after a line is printed within one inch from the bot-
tom, the.NNPmacro is activated. (In the jargon, tixd .wh
command sets &rap at the specified place, which is
‘sprung’ when that point is passedlPMBuses a skip
to the top of the next page (that’s what the was for),
then prints the title with the appropriate margins.
Why 'bp and'sp instead ofbp@nd.sp® The answer is
that .gp and.bpp like several other commands, cause a
breakto take place. That is, all the input text collected
but not yet printed is flushed out as soon as possible,
and the next input line is guaranteed to start a new line
of output. If we had usedspspr.typin the.NNPPmacro,
this would cause a break in the middle of the current
output line when a new page is started. The effect
would be to print the left-over part of that line at the top
of the page, followed by the next input line on a new

output line. This imotwhat we want. Usinginstead

of . for a command tellgoff that no break is to take
place — the output line currently being filled should
notbe forced out before the space or new page.

The list of commands that cause a break is short and
natural:

.bp .br .ce fi .nf sp .in .

All others causeno break, regardless of whether you
use a . or & If you really need a break, addta dom-
mand at the appropriate place.

One other thing to beware of — if you're changing
fonts or point sizes a lot, you may find that if you cross
a page boundary in an unexpected font or size, your
titles come out in that size and font instead of what you
intended. Furthermore, the length of a title is indepen-
dent of the current line length, so titles will come out at
the default length of 6.5 inches unless you change it,
which is done with thdt.tommand.

There are several ways to fix the problems of point
sizes and fonts in titles. For the simplest applications,
we can changeNRIRo set the proper size and font for
the title, then restore the previous values, like this:

.de NP

Ibp

'sp 0.5i

ftR \" set title font to roman
.ps 10 \" and size to 10 point
It 6i \" and length to 6 inches
Al “left center’right’

.ps \" revert to previous size
ftP \" and to previous font
'sp 0.3i

This version of N¥Pdoeshot work if the fields in thetltl
command contain size or font changes. To cope with
that requiregroff’s ‘environment’ mechanism, which
we will discuss in Section 13.

To get a footer at the bottom of a page, you can modify
.NP so it does some processing before 'bpe com-
mand, or split the job into a footer macro invoked at the
bottom margin and a header macro invoked at the top
of the page. These variations are left as exercises.

Output page numbers are computed automatically as
each page is produced (starting at 1), but no numbers
are printed unless you ask for them explicitly. To get
page numbers printed, include the chara¥ien %he.ttl

line at the position where you want the number to
appear. For example

-0

centers the page number inside hyphens, as on this
page. You can set the page number at any time with
either.igppm which immediately starts a new page num-
beredm or with .omm, which sets the page number for
the next page but doesn't cause a skip to the new page.
Again, .Iop+m sets the page numberrtanore than its

current value;bppneanshpp-11

10. Number Registers and Arithmetic

troff has a facility for doing arithmetic, and for defin-
ing and using variables with numeric values, called
number registers.Number registers, like strings and
macros, can be useful in setting up a document so it is
easy to change later. And of course they serve for any
sort of arithmetic computation.

Like strings, number registers have one or two charac-
ter names. They are set by the gommand, and are
referenced anywhere bymnfone character name) or
\n(xy (two character name).

There are quite a few pre-defined number registers
maintained bytroff, among them®4dor the current
page numbemlirfior the current vertical position on the
page; dyy mo andyyrfor the current day, month and
year; and.ssand.fffor the current size and font. (The
font is a number from 1 to 4.) Any of these can be used
in computations like any other register, but some, .kke .s
and.ff cannot be changed withr.nr

As an example of the use of number registers, in the
—ms macro package [4], most significant parameters are
defined in terms of the values of a handful of nhumber
registers. These include the point size for text, the ver-
tical spacing, and the line and title lengths. To set the
point size and vertical spacing for the following para-
graphs, for example, a user may say

.nrPS9
.nrvs 11

The paragraph macrd®FPR defined (roughly) as fol-
lows:

.de PP

.ps \n(PS \" reset size
.vs\\n(VSp \" spacing
ftR \" font

.sp 0.5v \" half a line
i +3m

This sets the font to Roman and the point size and line
spacing to whatever values are stored in the number
registerPBand\&S

Why are there two backslashes? This is the eternal
problem of how to quote a quote. Whewoff origi-

nally reads the macro definition, it peels off one back-
slash to see what's coming next. To ensure that another
is left in the definition when the macrousedwe have

to put in two backslashes in the definition. If only one
backslash is used, point size and vertical spacing will
be frozen at the time the macro is defined, not when it
is used.

Protecting by an extra layer of backslashes is only
needed foAnp\J \$ (which we haven’'t come to yet),
and\\itself. Things like\ss ¥ \h, \w, and so on do not
need an extra backslash, since they are converted by
troff to an internal code immediately upon being seen.

Arithmetic expressions can appear anywhere that a
number is expected. As a trivial example,

.nr PS\\n(PS-2

decrements PS by 2. Expressions can use the arith-
metic operators +, 1] /, % (mod), the relational oper-
ators >, >=, <, <=, =, and != (not equal), and parenthe-
ses.

Although the arithmetic we have done so far has been
straightforward, more complicated things are somewhat
tricky. First, number registers hold only integetsff
arithmetic uses truncating integer division, just like
Fortran. Second, in the absence of parentheses, evalua-
tion is done left-to-right without any operator prece-
dence (including relational operators). Thus

70-4+3/13

becomes ‘-1'. Number registers can occur anywhere in
an expression, and so can scale indicatorsgjkie m,

and so on (but no spaces). Although integer division
causes truncation, each number and its scale indicator
is converted to machine units (1/432 inch) before any
arithmetic is done, so 1i/2u evaluates to 0.5i correctly.
The scale indicatou wften has to appear when you
wouldn’t expect it — in particular, when arithmetic is
being done in a context that implies horizontal or verti-
cal dimensions. For example,

L 772i

would seem obvious enough —%23inches. Sorry.
Remember that the default units for horizontal parame-
ters like .lllare ems. That's really ‘7 ems / 2 inches’,
and when translated into machine units, it becomes
zero. How about

A7i2

Sorry, still no good — the ‘2" is ‘2 ems’, so '7i/2’ is
small, although not zero. Yauustuse

A7i2u

So again, a safe rule is to attach a scale indicator to
every number, even constants.

For arithmetic done within axtrsommand, there is no
implication of horizontal or vertical dimension, so the
default units are ‘units’, and 7i/2 and 7i/2u mean the
same thing. Thus

.nrll 7i/2
AM\\n(llu

does just what you want, so long as you don't forget the
u on the.lllcommand.

11. Macros with arguments

The next step is to define macros that can change from
one use to the next according to parameters supplied as
arguments. To make this work, we need two things:
first, when we define the macro, we have to indicate
that some parts of it will be provided as arguments
when the macro is called. Then when the macro is

called we have to provide actual arguments to be
plugged into the definition.

Let us illustrate by defining a maci®M3kht will print

its argument two points smaller than the surrounding
text. Thatis, the macro call

.SM TROFF

will produceTROFF
The definition of SBMis

.de SM
\s—2\\$1\s+2

Within a macro definition, the symbakiefers to the
nth argument that the macro was called with. Ths \$1
is the string to be placed in a smaller point size when
.SM is called.

As a slightly more complicated version, the following
definition of .S permits optional second and third
arguments that will be printed in the normal size:

.de SM
\$3\s—2\$1\s+2\\$2

Arguments not provided when the macro is called are
treated as empty, so

.SM TROFF),
producesTROFBP, while
.SM TROFF). (

produces TROFR. It is convenient to reverse the order
of arguments because trailing punctuation is much
more common than leading.

By the way, the number of arguments that a macro was
called with is available in number registér .$

The following macraBBDs the one used to make the
‘bold roman’ we have been using fooff command
names in text. It combines horizontal motions, width
computations, and argument rearrangement.

.de BD
\GWS3VFIWS1\h —\WwW \$1 u+1u WS 1\FP\$2

The \th and\\Wwcommands need no extra backslash, as
we discussed above. Th& k& there in case the argu-
ment begins with a period.

Two backslashes are needed with i$a tBmmands,
though, to protect one of them when the macro is being
defined. Perhaps a second example will make this
clearer. Consider a macro calleésHSthich produces
section headings rather like those in this paper, with the
sections numbered automatically, and the title in bold
in a smaller size. The use is

.SH "Section title ..."

(If the argument to a macro is to contain blanks, then it
must besurroundedby double quotes, unlike a string,

-10 -

where only one leading quote is permitted.)
Here is the definition of th&tShhacro:

.nrSHO
.de SH
.sp 0.3i
ftB

.nr SH\\n(SH+1 \" increment number
.ps \n(PS-1 \" decrease PS

\n(SH. \$1 \" number. title

.ps \\n(PS \" restore PS

.sp 0.3i

ftR

\" initialize section number

The section number is kept in number register SH,
which is incremented each time just before it is used.
(A number register may have the same name as a macro
without conflict but a string may not.)

We used\n(BbHnstead ofr¢gBHanAW(IEESInstead of
\n(PS. If we had used(8tEHve would get the value of
the register at the time the macro waginednot at the

time it wasused. If that's what you want, fine, but not
here. Similarly, by using\\iR8Swe get the point size

at the time the macro is called.

As an example that does not involve numbers, recall
our .NIP macro which had a

Al “left center right’
We could make these into parameters by using instead
AT N\OLTWOQCT\QRT

so the title comes from three strings called LT, CT and
RT. If these are empty, then the title will be a blank
line. Normally CT would be set with something like

.ds CT -%-

to give just the page number between hyphens (as on
the top of this page), but a user could supply private
definitions for any of the strings.

12. Conditionals

Suppose we want thé&SEHSHhacro to leave two extra
inches of space just before section 1, but nowhere else.
The cleanest way to do that is to test inside .8i¢ .SH
macro whether the section number is 1, and add some
space if it is. Theifitommand provides the conditional
test that we can add just before the heading line is out-
put:

Aif\Wn(SH=1 .sp 2i \" first section only

The condition after thef.dan be any arithmetic or log-
ical expression. If the condition is logically true, or
arithmetically greater than zero, the rest of the line is
treated as if it were text — here a command. If the
condition is false, or zero or negative, the rest of the
line is skipped.

It is possible to do more than one command if a condi-
tion is true. Suppose several operations are to be done

before section 1. One possibility is to define a macro
.S1 and invoke it if we are about to do section 1 (as
determined by arif)if

.de S1
--- processing for section 1 ---

.de SH

if\n(SH=1 .51

An alternate way is to use the extended form ofithe .if
like this:

.if\n(SH=1 \{--- processing
for section 1 ----\}

The braces{\&nd \} must occur in the positions shown
or you will get unexpected extra lines in your output.
troff also provides an ‘if-else’ construction, which we
will not go into here.

A condition can be negated by preceding it Wjtivé
get the same effect asae (butless clearly) by using

if \n(SH>1 .S1

There are a handful of other conditions that can be
tested with.ifif For example, is the current page even or
odd?

.if e .tl “even page title””
.if o .tl “odd page title””

gives facing pages different titles when used inside an
appropriate new page macro.

Two other conditions are and m which tell you
whether the formatter igoff or nroff.

.if t troff stuff ...
.if n nroff stuff ...

Finally, string comparisons may be made inifn .if
.if “stringl’string2” stuff

does ‘stuff’ if stringlis the same astring2. The char-
acter separating the strings can be anything reasonable
that is not contained in either string. The strings them-
selves can reference strings wWith arguments with$$

and so on.

13. Environments

As we mentioned, there is a potential problem when
going across a page boundary: parameters like size and
font for a page title may well be different from those in
effect in the text when the page boundary occtnaff
provides a very general way to deal with this and simi-
lar situations. There are three ‘environments’, each of
which has independently settable versions of many of
the parameters associated with processing, including
size, font, line and title lengths, fill/nofill mode, tab
stops, and even partially collected lines. Thus the
titing problem may be readily solved by processing the

-11 -

main text in one environment and titles in a separate
one with its own suitable parameters.

The commandeen shifts to environmemt; m must be

0, 1 or 2. The commangvewith no argument returns
to the previous environment. Environment names are
maintained in a stack, so calls for different environ-
ments may be nested and unwound consistently.
Suppose we say that the main text is processed in envi-
ronment 0, which is wheré&off begins by default.
Then we can modify the new page madw® .lPpro-
cess titles in environment 1 like this:

.de NP

.evl \" shift to new environment

It 6i \" set parameters here

ftR

.ps 10

... any other processing ...

.ev \" return to previous environment

It is also possible to initialize the parameters for an
environment outside theNENhacro, but the version
shown keeps all the processing in one place and is thus
easier to understand and change.

14. Diversions

There are numerous occasions in page layout when it
is necessary to store some text for a period of time
without actually printing it. Footnotes are the most
obvious example: the text of the footnote usually
appears in the input well before the place on the page
where it is to be printed is reached. In fact, the place
where it is output normally depends on how big it is,
which implies that there must be a way to process the
footnote at least enough to decide its size without print-
ing it.

troff provides a mechanism called a diversion for
doing this processing. Any part of the output may be
diverted into a macro instead of being printed, and then
at some convenient time the macro may be put back
into the input.

The commanddidiyxypbegins a diversion — all subse-
quent output is collected into the mactp wytil the
command.ddiwith no arguments is encountered. This
terminates the diversion. The processed text is avail-
able at any time thereafter, simply by giving the com-
mand

Xy

The vertical size of the last finished diversion is con-
tained in the built-in number registeén.dn

As a simple example, suppose we want to implement a
‘keep-release’ operation, so that text between the com-
mands.KSSand .KEE will not be split across a page
boundary (as for a figure or table). Clearly, wheK& .KS
is encountered, we have to begin diverting the output so
we can find out how big it is. Then whenkE.kKEseen,

we decide whether the diverted text will fit on the cur-
rent page, and print it either there if it fits, or at the top

of the next page if it doesn’t. So:

.de KS \" start keep

.br \" start fresh line

.evl \" collect in new environment
fi \" make it filled text

.di XX \" collect in XX

.de KE \" end keep

.br \" get last partial line

di \" end diversion
Af\n(dn>=\\n(.t .bp \" bp if doesn’t fit
.nf \" bring it back in no-fill

XX \" text

.ev \" return to normal environment

Recall that number registat isl the current position on
the output page. Since output was being diverted, this
remains at its value when the diversion startdd.isdn
the amount of text in the diversion;(another built-in
register) is the distance to the next trap, which we
assume is at the bottom margin of the page. If the
diversion is large enough to go past the trap,.ithis .if
satisfied, and dbjs issued. In either case, the diverted
output is then brought back withXXXX is essential to
bring it back in no-fill mode stroff will do no further
processing on it.

This is not the most general keep-release, nor is it
robust in the face of all conceivable inputs, but it would
require more space than we have here to write it in full
generality. This section is not intended to teach every-
thing about diversions, but to sketch out enough that
you can read existing macro packages with some com-
prehension.

Acknowledgements

| am deeply indebted to J. F. Ossanna, the author of
troff, for his repeated patient explanations of fine
points, and for his continuing willingness to adtpff

to make other uses easier. | am also grateful to Jim
Blinn, Ted Dolotta, Doug Mcllroy, Mike Lesk and Joel
Sturman for helpful comments on this paper.

References

[1]J. F. OssannaNROFF/TROFFUser’'s Manual, Bell
Laboratories Computing Science Technical Report 54,
1976.

[2]B. W. Kernighan,A System for Typesetting Mathe-
matics — User’s Guide (Second EditioBgll Labora-
tories Computing Science Technical Report 17, 1977.
[3]M. E. Lesk, TBL — A Program to Format Tables,
Bell Laboratories Computing Science Technical
Report 49, 1976.

[4]M. E. Lesk,Typing Documents on UNIBell Labo-
ratories, 1978.

[5]J. R. Mashey and D. W. Smit®WB/MM — Pro-
grammer’s Workbench Memorandum Macrd3ell
Laboratories internal memorandum.

-12 -

-13-

Appendix A: Phototypesetter Character Set

These characters exist in roman, italic, and bold. To get the one on the left, type the four-character name on the right.

ff\(ff fi \(fi fl \(fl ffi \(Fi ffl \(FI
_ \(ru — \(em Vs \(14 ¥ \(12 Y2 \(34
© \(co ° \(de T \(dg " \(fm ¢ \(ct
® \(rg « \(bu o \(sq - \(hy

(In bold, \(sq isa .)

The following are special-font characters:

+ \(pl = \(mi x \(mu + \(di
= \(eq = \(== > \(>= < \(<=
2 \(= + \(+- - \(no / \(sl
O \(ap = \(= O \(pt O \or
- \(-> - \(<- 1 \(ua ! \(da
I \(is 0 \(pd o \(if v \(sr
O \(sb O \(sp O \(cu n \(ca
O \(b O \(p O \(mo O \(es
. \(aa) \(@ o) \(ci \(bs
§ \(sc ¥ \(dd O \(h O \(rh
O \(t O \(rt O \(c O \(rc
O \(b O \(rb O \(f O \(rf
O \(k 0O \(rk O \(bv ¢ \(1s

| \(br \ \(or \(ul - \(rn
O (o

These four characters also have two-character names. The “ is the apostrophe on terminals; the
quote mark.

\ X \ e \

These characters exist only on the special font, but they do not have four-character names:
{0} < > " 0\ # @
For greek, precede the roman letteA@t& get the corresponding greek; for exam{{l& i a.

abgdezyhiklmncoprstufxqgw
aBydednbi kAuvéonportuvexyw

ABGDEZYHIKLMNCOPRSTUFXQW
ABTAEZHO I KAMNZONPETY®PXWQ

" is the other

-14 -

Index

! (negating conditionals)™17 #3$ (macro argument) 18, #
#(xy (invoke string macro) 14 #b (bracketing function)™13 #d
(subscript)™11 #f (font change)™s #h (horizontal motion)™12
#nx, #n(xy (number register)™15 #o0 (overstrike)"13 #s (size
change)™3 #u (superscript)”11 #v (vertical motion)"11 #w
(width function)™12 #z (zero motion)"?8ommand instead of
“command™9 % (page number register)™10,15 ™ (end of macro
definition)™7 "bp™9,10 “br (break)™ “ce (center)™2 “ds (define
string macro) 7,14 “fi (fill)"2 “ft (change font)™5 “if (condi-
tional test)"™16 “in (indent)"6 “lg (set ligatures™s “ll (line
length)™6 “nf (nofill)"2 “nr (set number register)"14 "pn (page
number)™10 "ps (change point size)™1,3 “sp (space)™4 “ss (set
space size) 10 “ta (set tab stops)™11 “tc (set tab character) 10
“tl (title)™ “tr (translate characters)™2,6 “ul (italicize)"6 “vs
(vertical spacing)™3 "wh (when conditional)™9,17 accents™6,13
apostrophes™6 arithmetic™15 backslash™,3,5,14,16 begin page
("bp)™9 block macros (B1,B2)"8 bold font (.ft B)"5 boustro-
phedon™12 bracketing function (##b) 13 break ("br)™9 break-
causing commmands™ centering ("ce)™2 changing fonts ('ft,
#f)"5 changing macros™15 character set™4,5,19 character trans-
lation ("tr)"2,6 columnated output™10 commands™1 commands
that cause break™ conditionals ("if)"16 constant proportion™7
default break list™9 define macro ("de)”7 define string macro
("ds)14 drawing lines™11 em™7,11 end of macro ()7 even
page test (e)"17 fill (°fi)2 fonts (*ft)"4,19 Greek [(#(5,19
hanging indent ("ti)"12 hints™20 horizontal motion (#h)™12 hp
(horizontal position register)™15 hyphen™6 i scale indicator'4
indent ("in)"6 index™21 italic font (.ft 1)"4 italicize ("ul)™6 legal
point sizes™3 ligatures (ff,fi,fl; “Ig)"5 line length ()6 line
spacing ("vs)™3 local motions (#u,#d,#v,#h#w,#0,#z,#b)"11 ff
m scale indicator”™7 machine units™4,12 macro arguments 15
macros™7 macros that change™5 multiple backslashes™14
negating conditionals (!)"17 new page macro (NP)™8 nl (cur-
rent vertical position register)”15 nofill ("nf)”2 NROFF test
(n)"17 nested quotes™2 number registers ("nr,#n)"14 num-
bered paragraphs™2 odd page test (0)"17 order of evalua-
tion"14 overstrike (#0)™13 p scale indicator”3 page number
register (%)"10 page numbers ("pn, "bp)"10 paragraph macro
(PG)™7 Paternoster™6 point size ("ps)™1,3 previous font (#fP, “ft
P)™5 previous point size (#s0,"ps)"3 quotes™6 relative change
()6 ROFF"1 ROFF header and footer8 Roman font (.ft R)™4
scale indicator i"4 scale indicator m™7 scale indicator p™3 scale
indicator u™12 scale indicators in arithmetic™15 section head-
ing macro (SC)™15 set space size ("ss)™10 size _ see point size
space ("sp)™4 space between lines ("vs)"3 special characters
(#(xx)™5,19 string macros ("d$f14 subscripts (#d)™11 super-
scripts (#u)™11 tab character ("tc)"11 tabs ("ta)"10 temporary
indent (ti)"7 titles (“tl)"8 translate (tr)"2,6,12 TROFF exam-
ples™9 TROFF test (t)™17 truncating division™15 type faces _
see fonts u scale indicator'12 underline ("ul)™6 valid point
sizes™3 vertical motion (#v)“11 vertical position on page™ ver-
tical spacing ("vs)"3 when ("wh)™9,17 width function (#w)™12
width of digits™10 zero motion (#z)"13

