An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Theshellis a command programming language that provides an interfaceuniiie
operating system. Its features include control-flow primitives, parameter passing, variables and string substitution.
Constructs such ashile, if then else, casendfor are available. Two-way communication is possible between the
shelland commands. String-valued parameters, typically file names or flags, may be passed to a command. A re-
turn code is set by commands that may be used to determine control-flow, and the standard output from a command
may be used as shell input.
The shellcan modify the environment in which commands run. Input and output can be redirected to files, and pro-
cesses that communicate through ‘pipes’ can be invoked. Commands are found by searching directories in the file
system in a sequence that can be defined by the user. Commands can be read either from the terminal or from a file,
which allows command procedures to be stored for later use.

November 2, 1997

TUNIX is a Trademark of Bell Laboratories.

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1.0 Introduction

The shell is both a command language and a programming language that provides an interface to the UNIX
operating system. This memorandum describes, with examples, the UNIX shell. The first section covers
most of the everyday requirements of terminal users. Some familiarity with UNIX is an advantage when
reading this section; see, for example, "UNIX for beginners". unix beginn kernigh 1978 Section 2
describes those features of the shell primarily intended for use within shell procedures. These include the
control-flow primitives and string-valued variables provided by the shell. A knowledge of a programming
language would be a help when reading this section. The last section describes the more advanced features
of the shell. References of the form "ga@pe (2)" are to a section of the UNIX manual. seventh 1978

ritchie thompson

1.1 Simple commands
Simple commands consist of one or more words separated by blanks. The first word is the name of the
command to be executed; any remaining words are passed as arguments to the command. For example,

who
is a command that prints the names of users logged in. The command

Is—I
prints a list of files in the current directory. The argumeénells s to print status information, size and the
creation date for each file.

1.2 Background commands
To execute a command the shell normally creates gremessand waits for it to finish. A command may
be run without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to compile the fiigm.c . The trailing& is an operator that instructs the shell not to
wait for the command to finish. To help keep track of such a process the shell reports its process number
following its creation. A list of currently active processes may be obtained usipgt¢benmand.

1.3 Input output redirection
Most commands produce output on the standard output that is initially connected to the terminal. This out-
put may be sent to a file by writing, for example,

Is —I >file

The notatior>file is interpreted by the shell and is not passed as an argumisntitdile does not exist
then the shell creates it; otherwise the original conterfiteare replaced with the output fras1 Output
may be appended to a file using the notation

Is —| >file

In this casdile is also created if it does not already exist.
The standard input of a command may be taken from a file instead of the terminal by writing, for example,

wc <file

The commandvc reads its standard input (in this case redirected filejrand prints the number of charac-
ters, words and lines found. If only the number of lines is required then

wc —| <file
could be used.
1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by writing the
‘pipe’ operator, ndicated byl , asin,

Is—l | wc
Two commands connected in this way constitutgpalineand the overall effect is the same as
Is -l >file; wc <file

except that ndile is used. Instead the two processes are connected by a pigpEs€d) and are run in
parallel. Pipes are unidirectional and synchronization is achieved by haitimdhen there is nothing to

read and haltings when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the result as out-
put. One such filtegrep,selects from its input those lines that contain some specified string. For example,

Is | grepold

prints those lines, if any, of the output frdethat contain the stringld. Another useful filter isort For
example,

who | sort

will print an alphabetically sorted list of logged in users.
A pipeline may consist of more than two commands, for example,

Is | grepold | wc—l
prints the number of file names in the current directory containing the shiing
1.5 File name generation
Many commands accept arguments which are file names. For example,

Is - main.c

prints information relating to the fil@ain.c.
The shell provides a mechanism for generating a list of file names that match a pattern. For example,

Is—l *.c

generates, as argumentdgall file names in the current directory that endcin The character is a pat-
tern that will match any string including the null string. In genpadlernsare specified as follows.

* Matches any string of characters including the null string.
? Matches any single character.
[...] Matches any one of the characters enclosed. A pair of characters separated by a minus will
match any character lexically between the pair.
For example,
[a-z]*

matches all names in the current directory beginning with one of the kettersighz.
lusr/fred/test/?

matches all names in the directdugr/fred/test that consist of a single character. If no file name is found
that matches the pattern then the pattern is passed, unchanged, as an argument.

-3-

This mechanism is useful both to save typing and to select names according to some pattern. It may also be
used to find files. For example,

echo /usr/fredd/core

finds and prints the names of afirefiles in sub-directories dlisr/fred . (echois a standard UNIX com-

mand that prints its arguments, separated by blanks.) This last feature can be expensive, requiring a scan of
all sub-directories ofusr/fred .

There is one exception to the general rules given for patterns. The chataatahé start of a file name

must be explicitly matched.

echox
will therefore echo all file names in the current directory not beginning with
echo.x

will echo all those file names that begin with ‘This avoids inadvertent matching of the namearid ‘.’
which mean ‘the current directory’ and ‘the parent directory’ respectively. (Noticésthiappresses infor-
mation for the files." and ..".)

1.6 Quoting

Characters that have a special meaning to the shell, sucl»as? | &, are called metacharacters. A
complete list of metacharacters is given in appendix B. Any character precedadshyuatedand loses
its special meaning, if any. Thés elided so that

echo \\?
will echo a single? , and
echo \\\

will echo a singld. To allow long strings to be continued over more than one line the seduemdime is

ignored.

\ is convenient for quoting single characters. When more than one character needs quotmethects

anism is clumsy and error prone. A string of characters may be quoted by enclosing the string between sin-
gle quotes. For example,

echo Xx*x*x “XX
will echo
XXFHHH XX

The quoted string may not contain a single quote but may contain newlines, which are preserved. This
guoting mechanism is the most simple and is recommended for casual use.
A third quoting mechanism using double quotes is also available that prevents interpretation of some but
not all metacharacters. Discussion of the details is deferred to section 3.4.

1.7 Prompting
When the shell is used from a terminal it will issue a prompt before reading a command. By default this
promptis $'. It may be changed by saying, for example,

PStyesdear

that sets the prompt to be the strimggdear .If a newline is typed and further input is needed then the shell
will issue the prompt>'. Sometimes this can be caused by mistyping a quote mark. If it is unexpected
then an interruptiEL) will return the shell to read another command. This prompt may be changed by
saying, for example,

PSZmore

1.8 The shell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If the user’s

login directory contains the filgrofile then it is assumed to contain commands and is read by the shell
before reading any commands from the terminal.

1.9 Summary

els

Print the names of files in the current directory.
o|s >file

Put the output fronts into file.

els | wc—l

Print the number of files in the current directory.
els | grep old

Print those file names containing the strirdj

ls| grepold | wc-I

Print the number of files whose name contains the stiahg
*CC pgm.c &

Runccin the background.

2.0 Shell procedures
The shell may be used to read and execute commands contained in a file. For example,

shfile [args..]

calls the shell to read commands fréila. Such a file is called @@mmand procedurer shell procedure.
Arguments may be supplied with the call and are referredfiteinsing the positional paramete$$, $2,
.... For example, if the filevg contains

who | grep $1
then

sh wg fred
is equivalent to

who | grep fred

UNIX files have three independent attributesd, writeandexecute.The UNIX commandhmod(1) may
be used to make a file executable. For example,

chmod +x wg

will ensure that the filevg has execute status. Following this, the command
wyg fred

is equivalent to
sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new process is cre-
ated to run the command.

As well as providing names for the positional parameters, the number of positional parameters in the call is
available a$# . The name of the file being executed is availabk0as

A special shell paramet& is used to substitute for all positional parameters ex@@ptA typical use of

this is to provide some default arguments, as in,

nroff —-T450-ms %
which simply prepends some arguments to those already given.
2.1 Control flow - for
A frequent use of shell procedures is to loop through the argundnty, ..) executing commands once

for each argument. An example of such a procedusd feat searches the filasr/lib/telnos that contains
lines of the form

fred mh0123
bert mh0789

The text oftel is

fori
do grep $i /ust/lib/telnos; done

The command
tel fred

prints those lines ifusr/lib/telnos that contain the strinfyed .
tel fred bert

-6-

prints those lines containirfged followed by those fobert.
Thefor loop notation is recognized by the shell and has the general form

for namein wl w2. ..
do command-list
done

A command-lisis a sequence of one or more simple commands separated or terminated by a newline or
semicolon. Furthermore, reserved words ldee and done are only recognized following a newline or
semicolon. nameis a shell variable that is set to the woves w2. .. in turn each time theommand-list
following do is executed. Iin w1l w2... is omitted then the loop is executed once for each positional
parameter; that isn $* is assumed.

Another example of the use of tfoe loop is thecreatecommand whose text is

for i do >$i; done
The command
create alpha beta

ensures that two empty filedgphaandbetaexist and are empty. The notatisfile may be used on its own
to create or clear the contents of a file. Notice also that a semicolon (or newline) is requireddrefore

2.2 Control flow - case
A multiple way branch is provided for by tikasenotation. For example,

case $#in

1) cat >%$1 ;;

2) cat >$2 <$1 ;;

*) echo \'usage: append [from] to\’ ;;
esac

is anappendcommand. When called with one argument as
append file

$#is the stringl and the standard input is copied onto the erfdeafising thecat command.
append filel file2

appends the contents fid&é1 ontofile2. If the number of arguments suppliedaopends other than 1 or 2
then a message is printed indicating proper usage.
The general form of theasecommand is

casewordin
pattern) command-list;

esac

The shell attempts to matevord with eachpattern,in the order in which the patterns appear. If a match is
found the associatesbmmand-lists executed and execution of tt@seis complete. Since is the pattern

that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argument. The first
match found defines the set of commands to be executed. In the example below the commands following
the seconé will never be executed.

case $# in
*) ...
*) ...
esac

-7-

Another example of the use of thaseconstruction is to distinguish between different forms of an argu-
ment. The following example is a fragment afcccommand.

fori

do case $iin
—locs) ...:
—%) echo \'unknown flag $iV’ ;;
*.C) Nlib/cO $i. . .;;
%) echo \'unexpected argument $i\’ ;;
esac

done

To allow the same commands to be associated with more than one patteasat@mmand provides for
alternative ptterns separated byla . For example,
case $iin

-X1=y)...
esac

is equivalent to

case $iin

-xy]) ...
esac

The usual quoting conventions apply so that

case $iin
\\?)

will match the charactet.

2.3 Here documents
The shell procedureel in section 2.1 uses the filesr/lib/telnos to supply the data fagrep. An alternative
is to include this data within the shell procedure heradocument, as in,

fori

do grep $i <!
fred mh0123
bert mh0789

!

done
In this example the shell takes the lines betwegrand! as the standard input fgrep. The string! is
arbitrary, the document being terminated by a line that consists of the string following <.
Parameters are substituted in the document before it is made availgtelpads illustrated by the following
procedure calleddg .

ed $3 <%
o/$1/sl/$2/g
w

%

The call
edg string1l string2 file
is then equivalent to the command

ed file <%

g/stringl1/s//string2/g
w
%

and changes all occurrencesstiinglin file to string2 . Substitution can be prevented using \ to quote the
special characte§ as in

ed $3 <+
1\$s/$1/$2/g
w

+

(This version ofedgis equivalent to the first except tred will print a ? if there are no occurrences of the
string $1) Substitution within ahere document may be prevented entirely by quoting the terminating
string, for example,

grep $i <\\#
#
The document is presented without modificatiogrep. If parameter substitution is not required ihexe

document this latter form is more efficient.

2.4 Shell variables
The shell provides string-valued variables. Variable names begin with a letter and consist of letters, digits
and underscores. Variables may be given values by writing, for example,

user=fred box=m000 acct=mh0000

which assigns values to the variahblser, boxandacct. A variable may be set to the null string by saying,
for example,

null=
The value of a variable is substituted by preceding its namebwitir example,
echo $user

will echofred.
Variables may be used interactively to provide abbreviations for frequently used strings. For example,

b=/usr/fred/bin
mv pgm $b

will movethe filepgmfrom the current directory to the directdnsr/fred/bin. A more general notation is
available for parameter (or variable) substitution, as in,

echo ${user}
which is equivalent to
echo $user
and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmp}a

will direct the output opsto the file/tmp/psa, whereas,
ps a >$tmpa

would cause the value of the variabigpa to be substituted.
Except for$? the following are set initially by the shel?is set after executing each command.

$?

$#
$$

$!
$-

-9-

The exit status (return code) of the last command executed as a decimal string. Most commands
return a zero exit status if they complete successfully, otherwise a non-zero exit status is

returned. Testing the value of return codes is dealt with later ifrededwhile commands.

The number of positional parameters (in decimal). Used, for example, appleedcommand

to check the number of parameters.

The process number of this shell (in decimal). Since process numbers are uniqgue among all
existing processes, this string is frequently used to generate unique temporary file names. For
example,

ps a >/tmp/ps$$

rm /tmp/ps$$

The process number of the last process run in the background (in decimal).
The current shell flags, such-asand-v.

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL

$HOME

$PATH

$PS1
$PSs2
$IFS

When used interactively the shell looks at the file specified by this variable before it issues a
prompt. If the specified file has been modified since it was last looked at the shell prints the mes-
sageyou have maibefore prompting for the next command. This variable is typically set in the
file .profile, in the user’s login directory. For example,

MAIL =/usr/mail/fred

The default argument for theel command. The current directory is used to resolve file name ref-
erences that do not begin witti,aand is changed using tkd command. For example,

cd /usr/fred/bin
makes the current directofysr/fred/bin .
catwn

will print on the terminal the filevn in this directory. The commancd with no argument is
equivalent to

cd $HOME

This variable is also typically set in the the user’s login profile.

A list of directories that contain commands (8sarch path. Each time a command is executed
by the shell a list of directories is searched for an executable fi8PATH is not set then the
current directoryjbin, and/usr/bin are searched by default. Otherw§RATH consists of direc-
tory names separated by For example,

PATH=:/usr/fred/bin/bin;/usr/bin

specifies that the current directory (the null string before the:firstusr/fred/bin, /bin and

/usr/bin are to be searched in that order. In this way individual users can have their own ‘pri-
vate’ commands that are accessible independently of the current directory. If the command name
contains d then this directory search is not used; a single attempt is made to execute the com-
mand.

The primary shell prompt string, by defau,:

The shell prompt when further input is needed, by default,

The set of characters usedliignk interpretatior(see section 3.4).

2.5 The test command
Thetestcommand, although not part of the shell, is intended for use by shell programs. For example,

test—f file

returns zero exit statusfife exists and non-zero exit status otherwise. In genesa¢valuates a predicate
and returns the result as its exit status. Some of the more frequentlgsiseguments are given here, see

-10 -

test(1) for a complete specification.

tests true if the argumesis not the null string
test—f file true if file exists

test—r file true iffile is readable

test-w file true iffile is writable

test—d file true iffile is a directory

2.6 Control flow - while

The actions of théor loop and thecasebranch are determined by data available to the shelkhite or

until loop and anf then elsebranch are also provided whose actions are determined by the exit status
returned by commands. while loop has the general form

while command-list
do command-list
done

The value tested by thehile command is the exit status of the last simple command followimite.
Each time round the looppmmand-listis executed; if a zero exit status is returned t@mmmand-listis
executed; otherwise, the loop terminates. For example,

while test $1
do...

shift
done

is equivalent to

fori
do...
done

shiftis a shell command that renames the positional paran$2ets, .. as$1, $2, ...and lose$1.
Another kind of use for thevhile/until loop is to wait until some external event occurs and then run some
commands. In aaontil loop the termination condition is reversed. For example,

until test—f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again. (Presumably
another process will eventually create the file.)

2.7 Control flow - if
Also available is a general conditional branch of the form,

if command-list
then command-list
else command-list
fi

that tests the value returned by the last simple command folldfwving
Theif command may be used in conjunction with tdstcommand to test for the existence of a file as in

if test—f file

then process file

else do something else
fi

-11-

An example of the use df caseandfor constructions is given in section 2.10.
A multiple testif command of the form

if ...

then ...

else if...
then ...
else if...

fi
fi
fi

may be written using an extension of thaotation as,

if ...
then ...
elif
then ...
elif

fi

The following example is thuchcommand which changes the ‘last modified’ time for a list of files. The
command may be used in conjunction withke(1) to force recompilation of a list of files.

flag=
fori
do case $iin
—C) flag=N ;;
*) if test—f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \W$i\\" does not exist
else >$i
fi
esac
done

The —c flag is used in this command to force subsequent files to be created if they do not already exist.
Otherwise, if the file does not exist, an error message is printed. The shell a@ldeet to some non-
null string if the—c argument is encountered. The commands

In...,rm...

make a link to the file and then reme itthus causing the last modified date to be updated.
The sequence

if commandl
then command2
fi

may be written

commandl && command?2
Conversely,

commandl | command2

executescommand2only if commandifails. In each case the value returned is that of the last simple

-12-

command executed.

2.8 Command grouping

Commands may be grouped in two ways,
{ command-list }

and
(command-lis)

In the firstcommand-lists simply executed. The second form execat@amand-lisas a separate process.
For example,

(cd x; rm junk)

executesm junkin the directoryx without changing the current directory of the invoking shell.
The commands

cd x; rm junk
have the same effect but leave the invoking shell in the directory
2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first is invoked
within the procedure as

set—v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to help isolate
syntax errors. It may be invoked without modifying the procedure by saying

sh-v proc...

whereprocis the name of the shell procedure. This flag may be used in conjunction with fthg which
prevents execution of subsequent commands. (Note that smtingat a terminal will render the terminal
useless until an end-of-file is typed.)

The command

set—x

will produce an execution trace. Following parameter substitution each command is printed as it is
executed. (Try these at the terminal to see what effect they have.) Both flags may be turned off by saying

set-
and the current setting of the shell flags is availabf-as
2.10 The man command

The following is themancommand which is used to print sections of the UNIX manual. It is called, for
example, as

man sh
man-t ed
man 2 fork

In the first the manual section fehis printed. Since no section is specified, section 1 is used. The second
example will typeset-t option) the manual section fed. The last prints théork manual page from sec-
tion 2.

cd /usr/man

-13-

: “colon is the comment command”
: “default is nroff ($N), section 1 ($s)’
N=ns=1

fori
do case $iin

[1-9]*) s=$%i;;

—)N=t ;;

-n) N=n;;

—%) echo unknown flag \V'$i\\" ;;

%) if test—f man$s/$i.$s
then ${N}roff man0/${N}aa man$s/$i.$s
else :’look through all manual sections’
found=no
forjin123456789
do if test—f man$j/$i.$j
then man $j $i
found=yes
fi
done
case $found in
no) echo \'$i: manual page not found\'
esac
fi
esac
done

Figure 1. A version of the man command

-14 -

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An argument to a
shell procedure of the formame=valuethat precedes the command name cauaksto be assigned to
namebefore execution of the procedure begins. The valugaofein the invoking shell is not affected.

For example,

user=fred command

will executecommandwith user set tofred. The—k flag causes arguments of the foname=valueto be
interpreted in this way anywhere in the argument list. $wachesare sometimes called keyword parame-
ters. If any arguments remain they are available as positional parafketés. . . .

Thesetcommand may also be used to set positional parameters from within a procedure. For example,

set—x*

will set $1 to the first file name in the current directddf to the next, and so on. Note that the first argu-
ment,—, ensures correct treatment when the first file name begins with a

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied with the call.
Keyword parameters are also made available implicitly to a shell procedure by specifying in advance that
such parameters are to be exported. For example,

export user box

marks the variableaser and box for export. When a shell procedure is invoked copies are made of all
exportable variables for use within the invoked procedure. Maodification of such variables within the proce-
dure does not affect the values in the invoking shell. It is generally true of a shell procedure that it may not
modify the state of its caller without explicit request on the part of the caller. (Shared file descriptors are an
exception to this rule.)

Names whose value is intended to remain constant may be deeladedly . The form of this command

is the same as that of thgportcommand,

readonly name. .
Subsequent attempts to set readonly variables are illegal.
3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the \dhisabte
set

echo $d

or
echo ${d}

will echo nothing. A default string may be given as in
echo ${d-}

which will echo the value of the variabtkif it is set and " otherwise. The default string is evaluated
using the usual quoting conventions so that

echo ${d-"+"}
will echo* if the variabled is not set. Similarly
echo ${d-$1}

will echo the value ofl if it is set and the value (if any) &1 otherwise. A variable may be assigned a
default value using the notation

echo ${d=}

-15-

which substitutes the same string as
echo ${d-}

and ifd were not previously set then it will be set to the strihg (The notation ${. =.. .} is not available
for positional parameters.)
If there is no sensible default then the notation

echo ${d?message}

will echo the value of the variabtkif it has one, otherwismessagés printed by the shell and execution of
the shell procedure is abandonedmiéssagés absent then a standard message is printed. A shell proce-
dure that requires some parameters to be set might start as follows.

: ${user?} ${acct?} ${bin?}

Colon) is a command that is built in to the shell and does nothing once its arguments have been evalu-
ated. If any of the variablasser, acctor bin are not set then the shell will abandon execution of the proce-
dure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The command
pwd prints on its standard output the name of the current directory. For example, if the current directory is
{usr/fred/bin then the command

d="pwd"
is equivalent to
d=/usr/fred/bin

The entire string between grave accents.|j is taken as the command to be executed and is replaced with
the output from the command. The command is written using the usual quoting conventions excépt that a
must be escaped usind.aFor example,

Is “echo "$1"
is equivalent to
Is $1

Command substitution occurs in all contexts where parameter substitution occurs (inblerdidgcu-

ments) and the treatment of the resulting text is the same in both cases. This mechanism allows string pro-
cessing commands to be used within shell procedures. An example of such a contraaaddmevhich

removes a specified suffix from a string. For example,

basename maio.c
will print the stringmain . Its use is illustrated by the following fragment froracaommand.

case $Ain
%*.c) B="basename $&"

esac

that set® to the part offA with the suffix.c stripped.
Here are some composite examples.
foriin’ls —t;do...
The variablé is set to the names of files in time order, most recent first.

-16 -

set "date’; echo $6 $2 $3, $4
will print, e.g.,1977 Nov 1, 23:59:59

3.4 Evaluation and quoting
The shell is a macro processor that provides parameter substitution, command substitution and file nhame
generation for the arguments to commands. This section discusses the order in which these evaluations
occur and the effects of the various quoting mechanisms.
Commands are parsed initially according to the grammar given in appendix A. Before a command is
executed the following substitutions occur.

sparameter substitution, e user

ecommand substitution, e.gpwd"

Only one evaluation occurs so that if, for example, the value of the vaXiabléne stringby then

echo $X

will echo$y .

blank interpretation

Following the abve substitutions the resulting characters are broken into non-blank waaad (nter-
pretation). For this purpose ‘blanks’ are the characters of the sfiff§y By default, this string consists
of blank, tab and newline. The null string is not regarded as a word unless it is quoted. For example,

echo”’
will pass on the null string as the first argumeregdbq whereas
echo $null

will call echowith no arguments if the variabhll is not set or set to the null string.
«file name generation
Each word is then scanned for the file pattern charagetePsand[...] and an alphabetical list of file
names is generated to replace the word. Each such file name is a separate argument.
The evaluations just described also occur in the list of words associatedfarittoep. Only substitution
occurs in thevord used for acasebranch.
As well as the quoting mechanisms described earlier dsamgl“. . .” a third quoting mechanism is pro-
vided using double quotes. Within double quotes parameter and command substitution occurs but file hame
generation and the interpretation of blanks does not. The following characters have a special meaning
within double quotes and may be quoted u$ing

$ parameter substitution
) command substitution
ends the quoted string
\ guotes the special charact&rs" \

For example,
echo "$x"

will pass the value of the variableas a single argument ézho. Similarly,

echo "$"

will pass the positional parameters as a single argument and is equivalent to
echo "$1 $2. "

The notatior$@ is the same ab+ except when it is quoted.
echo "$@"

will pass the positional parameters, unevaluatedclhoand is equivalent to
echo "$1" "$2". ..

-17 -

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated.

metacharacter

\ $ *) " !

n n n n n t
) y n n t n n
" y y n y t n

t terminator

y interpreted

n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in comrabndy be used. For
example, if the variablX has the valu8y, and ify has the valuggr then

eval echo $X

will echo the stringpqr .
In general theevalcommand evaluates its arguments (as do all commands) and treats the result as input to
the shell. The input is read and the resulting command(s) executed. For example,

wg=\"eval who! grep\’
$wg fred

is equivalent to
whol grep fred

In this examplegvalis required since there is no interpretation of metacharacters, suchf@mwing
substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the shell is being
used interactively. An interactive shell is one whose input and output are connected to a terminal (as deter-
mined bygtty (2)). A shell invoked with the-i flag is also interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.

Input output redirection may fail. For example, if a file does not exist or cannot be created.

*The command itself does not exist or cannot be executed.

*The command terminates abnormally, for example, with a "bus error" or "memory fault". See Figure 2
below for a complete list of UNIX signals.

*The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case an error
message will be printed by the shell. All remaining errors cause the shell to exit from a command proce-
dure. An interactive shell will return to read another command from the terminal. Such errors include the
following.

*Syntax errors. e.g., if..then...done

*A signal such as interrupt. The shell waits for the current command, if any, to finish execution and then
either exits or returns to the terminal.

Failure of any of the built-in commands suchcds

The shell flag-e causes the shell to terminate if any error is detected.

1 hangup
2 interrupt
3* quit

4* illegal instruction
5% trace trap
6* IOT instruction

-18 -

7* EMT instruction

8* floating point exception

9 kill (cannot be caught or ignored)
10* bus error

11* segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read it
14 alarm clock

15 software termination (froikill (1))

Figure 3. UNIX signals

Those signals marked with an asterisk produce a core dump if not caught. However, the shell itself ignores
quit which is the only external signal that can cause a dump. The signals in this list of potential interest to
shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling
Shell procedures normally terminate when an interrupt is received from the termindafag bemmand is
used if some cleaning up is required, such as removing temporary files. For example,

trap ‘rm tmp/psS; exit” 2
sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the commands
rm /tmp/ps$$; exit

exitis another built-in command that terminates execution of a shell procedurexifiserequired; other-

wise, after the trap has been taken, the shell will resume executing the procedure at the place where it was
interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the signal is never
sent to the process. They can be caught, in which case the process must decide what action to take when
the signal is received. Lastly, they can be left to cause termination of the process without it having to take
any further action. If a signal is being ignored on entry to the shell procedure, for example, by invoking it

in the background (see 3.7) theap commands (and the signal) are ignored.

The use ofrap is illustrated by this modified version of ttmichcommand (Figure 4). The cleanup action

is to removehe filejunk$$.

flag=
trap ‘rm-f junk$$; exit” 1 2 3 15
fori
do case $iin
—C) flag=N ;;
*) if test—f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \W$i\\" does not exist
else >$i
fi
esac
done

Figure 4. The touch command

Thetrap command appears before the creation of the temporary file; otherwise it would be possible for the
process to die without removing the file.

-19 -

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be executed on exit
from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to trap. The
following fragment is taken from theohupcommand.

trap”” 12315

which causedangup, interrupt, quiindkill to be ignored both by the procedure and by invoked com-
mands.
Traps may be reset by saying

trap2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of traps may be
obtained by writing

trap

The procedurscan(Figure 5) is an example of the usetrafp where there is no exit in the trap command.
scantakes each directory in the current directory, prompts with its name, and then executes commands
typed at the terminal until an end of file or an interrupt is received. Interrupts are ignored while executing
the requested commands but cause termination sdsens waiting for input.

d="pwd"
foriin
do if test—d $d/$i
then cd $d/$i
while echo "$i:"
trap exit 2
read X
do trap : 2; eval $x; done
fi
done

Figure 5. The scan command

read xis a built-in command that reads one line from the standard input and places the result in the variable
X. It returns a non-zero exit status if either an end-of-file is read or an interrupt is received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the sy$teka call

The execution environment for the command includes input, output and the states of signals, and is estab-
lished in the child process before the command is executed. The built-in coraremiglused in the rare

cases when no fork is required and simply replaces the shell with a new command. For example, a simple
version of thenohupcommand looks like

trap\'\'12315
exec $

Thetrap turns off the signals specified so that they are ignored by subsequently created commeareés and
replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the follawmdds only subject

to parameter and command substitution. No file name generation or blank interpretation takes place so
that, for example,

echo...>x.c

will write its output into a file whose name#sc. Input output specifications are evaluated left to right as
they appear in the command.

-20 -

> word The standard output (file descriptor 1) is sent to theniled which is created if it does not
already exist.

>> word The standard output is sent to fiverd. If the file exists then output is appended (by seeking
to the end); otherwise the file is created.

< word The standard input (file descriptor 0) is taken from thenfded.

<< word The standard input is taken from the lines of shell input that follow up to but not including a

line consisting only ofword. If word is quoted then no interpretation of the document
occurs. Ifwordis not quoted then parameter and command substitution occlisanded
to quote the characteks$ * and the first character @ford. In the latter cas&newline is
ignored (c.f. quoted strings).

>& digit The file descriptodigit is duplicated using the system caillp (2) and the result is used as
the standard output.

<& digit The standard input is duplicated from file descripligit.

<&- The standard input is closed.

>&— The standard output is closed.

Any of the alovemay be preceded by a digit in which case the file descriptor created is that specified by the

digit instead of the default O or 1. For example,

... 2>file
runs a command with message output (file descriptor 2) direcfiéel to
L2281

runs a command with its standard output and message output merged. (Strictly speaking file descriptor 2 is
created by duplicating file descriptor 1 but the effect is usually to merge the two streams.)
The environment for a command run in the background such as

listx.c| Ipr&

is modified in two ways. Firstly, the default standard input for such a command is the emigvfiteill .
This prevents two processes (the shell and the command), which are running in parallel, from trying to read
the same input. Chaos would ensue if this were not the case. For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT and INTER-
RUPT signals so that they are ignored by the command. This allows these signals to be used at the terminal
without causing background commands to terminate. For this reason the UNIX convention for a signal is
that if it is set to 1 (ignored) then it is never changed even for a short time. Note that the shell command
trap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of argument zero is
a minus, then commands are read from theiiefile .

—c string

If the —c flag is present then commands are read Btring .

—slf the —sflag is present or if no arguments remain then commands are read from the standard input. Shell
output is written to file descriptor 2.

—ilf the =i flag is present or if the shell input and output are attached to a terminal (as gty byen this

shell isinteractive. In this case TERMINATE is ignored (so thiitl 0 does not kill an interactive shell)

and INTERRUPT is caught and ignored (so thatt is interruptable). In all cases QUIT is ignored by the
shell.

-21-

Acknowledgements

The design of the shell is based in part on the original UNIX shell unix command language thompson and
the PWB/UNIX shell, pwb shell mashey unix some features having been taken from both. Similarities also
exist with the command interpreters of the Cambridge Multiple Access System cambridge multiple access
system hartley and of CTSS. ctss

| would like to thank Dennis Ritchie and John Mashey for many discussions during the design of the shell.

| am also grateful to the members of the Computing Science Research Center and to Joe Maranzano for
their comments on drafts of this document.

$LISTS

-22.

Appendix A - Grammar

item:

word
input-output
name = value

simple-command: item

command:

pipeline:

andor:

simple-command item

simple-command
(command-lis)
{ command-lis}
for namedo command-listione
for namein word. .. docommand-lisdone
while command-listo command-listone
until command-listio command-listione
casewordin case-part ..esac
if command-listhen command-list else-paft

command
pipeline! command

pipeline
andor&& pipeline
andor | | pipeline

command-list: andor

command-list
command-lis&
command-list andor
command-lis& andor

input-output: > file

file:

case-part:

pattern:

else-part:

empty:
word:
name:

digit:

< file
> word
< word

word

& digit

& —

patterr) command-list;

word
pattern| word

elif command-listhen command-list else-part
elsecommand-list
empty

a sequence of non-blank characters

a sequence of letters, digits or underscores starting with a letter

0123456789

-23-

Appendix B - Meta-characters and Reserved Words
a) syntactic
\ pipe symbol
&& ‘andf’ symbol
|] ‘orf” symbol
; command separator
" case delimiter

& background commands

O command grouping

< input redirection

< input from a here document
> output creation

> output append

b) patterns

* match any character(s) including none
? match any single character

[...] match any of the enclosed characters

¢) substitution
${...} substitute shell variable
substitute command output

d) quoting

\ quote the next character

! guote the enclosed characters except for
guote the enclosed characters excep$for”

e) reserved words

if then else elif fi
case in esac
for while until do done

{}

